Lax Pair and Darboux Transformation for a Variable-Coefficient Fifth-Order Korteweg-de Vries Equation with Symbolic Computation

被引:0
作者
ZHANG Ya-Xing~1 ZHANG Hai-Qiang~1 LI Juan~1 XU Tao~1 ZHANG Chun-Yi~(2
机构
基金
中国国家自然科学基金;
关键词
variable-coefficient fifth-order Korteweg-de Vries equation; Lax pair; Darboux transformation; solitonic solutions; symbolic computation;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this paper,we put our focus on a variable-coefficient fifth-order Korteweg-de Vries (fKdV) equation,which possesses a great number of excellent properties and is of current importance in physical and engineering fields.Certain constraints are worked out,which make sure the integrability of such an equation.Under those constraints,someintegrable properties are derived,such as the Lax pair and Darboux transformation.Via the Darboux transformation,which is an exercisable way to generate solutions in a recursive manner,the one-and two-solitonic solutions are presentedand the relevant physical applications of these solitonic structures in some fields are also pointed out.
引用
收藏
页码:833 / 838
页数:6
相关论文
共 4 条
  • [1] Macropterons, micropterons and similarity reductions for the regularized Ostrovsky-Grimshaw model for fluids and plasmas with symbolic computation[J] . Yi-Tian Gao,Bo Tian,Chun-Yi Zhang.Acta Mechanica . 2006 (1)
  • [2] Europhys.Lett . 2007
  • [3] Evolution Equations .2 R.C.Cascaval. Marcel Dekker . 2003
  • [4] Direct methods in soliton theory .2 Hirota R. Topic in Current Physics , ed. R. K. Bullough, P. J. Caudrey.Springer-Verlag, New York, Berlin, Heidelberg . 1980