Research on system combination of machine translation based on Transformer

被引:0
作者
刘文斌 [1 ]
HE Yanqing [1 ]
LAN Tian [1 ]
WU Zhenfeng [1 ]
机构
[1] Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
关键词
D O I
暂无
中图分类号
TP391.2 [翻译机];
学科分类号
081203 ; 0835 ;
摘要
Influenced by its training corpus, the performance of different machine translation systems varies greatly. Aiming at achieving higher quality translations, system combination methods combine the translation results of multiple systems through statistical combination or neural network combination. This paper proposes a new multi-system translation combination method based on the Transformer architecture, which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination. The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU) points compared with the best single system results, 0.71-3.12more BLEU points compared with the statistical combination method, and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method. The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.
引用
收藏
页码:310 / 317
页数:8
相关论文
共 8 条
  • [1] 基于重解码的神经机器翻译方法研究
    宗勤勤
    李茂西
    [J]. 中文信息学报, 2021, (06) : 39 - 46
  • [2] 篇章神经机器翻译综述
    苏劲松
    陈骏轩
    陆紫耀
    董怡帆
    康立言
    张海英
    [J]. 情报工程, 2020, 6 (05) : 4 - 14
  • [3] 基于CSGAN的多模型融合蒙汉神经机器翻译研究
    武子玉
    侯宏旭
    白天罡
    吉亚图
    乌尼尔
    郭紫月
    王雪姣
    孙硕
    [J]. 江西师范大学学报(自然科学版), 2020, 44 (02) : 153 - 159
  • [4] 神经机器翻译的系统融合方法
    谭敏
    殷明明
    段湘煜
    [J]. 厦门大学学报(自然科学版), 2019, 58 (04) : 600 - 607
  • [5] 面向专利领域的汉英机器翻译融合系统
    李洪政
    赵凯
    胡韧奋
    蒋宏飞
    朱筠
    晋耀红
    [J]. 情报工程, 2017, 3 (03) : 105 - 115
  • [6] 机器翻译系统融合技术综述
    李茂西
    宗成庆
    [J]. 中文信息学报, 2010, 24 (04) : 74 - 84+118
  • [7] Hybrid System Combination Framework for Uyghur-Chinese Machine Translation
    Wang, Yajuan
    Li, Xiao
    Yang, Yating
    Anwar, Azmat
    Dong, Rui
    [J]. INFORMATION, 2021, 12 (03) : 1 - 19
  • [8] Long Zhou,Jiajun Zhang,Xiaomian Kang,Chengqing Zong.Deep Neural Network Based Machine Translation System Combination[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2020