Research on system combination of machine translation based on Transformer
被引:0
作者:
刘文斌
论文数: 0引用数: 0
h-index: 0
机构:
Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of ChinaResearch Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
刘文斌
[1
]
HE Yanqing
论文数: 0引用数: 0
h-index: 0
机构:
Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of ChinaResearch Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
HE Yanqing
[1
]
LAN Tian
论文数: 0引用数: 0
h-index: 0
机构:
Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of ChinaResearch Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
LAN Tian
[1
]
WU Zhenfeng
论文数: 0引用数: 0
h-index: 0
机构:
Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of ChinaResearch Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
WU Zhenfeng
[1
]
机构:
[1] Research Center for Information Science Theory and Methodology, Institute of Scientific andTechnical Information of China
Influenced by its training corpus, the performance of different machine translation systems varies greatly. Aiming at achieving higher quality translations, system combination methods combine the translation results of multiple systems through statistical combination or neural network combination. This paper proposes a new multi-system translation combination method based on the Transformer architecture, which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination. The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU) points compared with the best single system results, 0.71-3.12more BLEU points compared with the statistical combination method, and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method. The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R China
Xinjiang Police Coll, Dept Informat Secur Engn, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Wang, Yajuan
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Li, Xiao
Yang, Yating
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Yang, Yating
Anwar, Azmat
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Anwar, Azmat
Dong, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
[8]
Long Zhou,Jiajun Zhang,Xiaomian Kang,Chengqing Zong.Deep Neural Network Based Machine Translation System Combination[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2020
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R China
Xinjiang Police Coll, Dept Informat Secur Engn, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Wang, Yajuan
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Li, Xiao
Yang, Yating
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Yang, Yating
Anwar, Azmat
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Anwar, Azmat
Dong, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
[8]
Long Zhou,Jiajun Zhang,Xiaomian Kang,Chengqing Zong.Deep Neural Network Based Machine Translation System Combination[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2020