A weak Galerkin-mixed finite element method for the Stokes-Darcy problem

被引:0
作者
Hui Peng [1 ]
Qilong Zhai [1 ]
Ran Zhang [1 ]
Shangyou Zhang [2 ]
机构
[1] School of Mathematics, Jilin University
[2] Department of Mathematical Sciences, University of Delaware
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition. We use the weak Galerkin method to discretize the Stokes equation and the mixed finite element method to discretize the Darcy equation. A discrete inf-sup condition is proved and the optimal error estimates are also derived. Numerical experiments validate the theoretical analysis.
引用
收藏
页码:2357 / 2380
页数:24
相关论文
共 50 条
[31]   A weak Galerkin finite element method for the stokes equations [J].
Junping Wang ;
Xiu Ye .
Advances in Computational Mathematics, 2016, 42 :155-174
[32]   A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem [J].
Li, Rui ;
Li, Jian ;
Chen, Zhangxin ;
Gao, Yali .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 :92-104
[33]   A New Local and Parallel Finite Element Method for the Coupled Stokes-Darcy Model [J].
Du, Guangzhi ;
Zuo, Liyun ;
Zhang, Yuhong .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
[34]   Mortar multiscale finite element methods for Stokes-Darcy flows [J].
Girault, Vivette ;
Vassilev, Danail ;
Yotov, Ivan .
NUMERISCHE MATHEMATIK, 2014, 127 (01) :93-165
[35]   Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem [J].
Sun, Yizhong ;
Sun, Weiwei ;
Zheng, Haibiao .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 374
[36]   A penalty method for approximation of the stationary Stokes-Darcy problem [J].
Han, Wei-Wei ;
Jiang, Yao-Lin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
[37]   A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem [J].
Discacciati, Marco ;
Oyarzua, Ricardo .
NUMERISCHE MATHEMATIK, 2017, 135 (02) :571-606
[38]   A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE LINEAR ELASTICITY PROBLEM IN MIXED FORM [J].
Wang, Ruishu ;
Zhang, Ran .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (04) :469-491
[39]   A modified weak Galerkin finite element method for the Stokes equations [J].
Mu, Lin ;
Wang, Xiaoshen ;
Ye, Xiu .
Journal of Computational and Applied Mathematics, 2015, 275 :79-90
[40]   Discontinuous finite volume methods for the stationary Stokes-Darcy problem [J].
Wang, Gang ;
He, Yinnian ;
Li, Rui .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (05) :395-418