A weak Galerkin-mixed finite element method for the Stokes-Darcy problem

被引:0
作者
Hui Peng [1 ]
Qilong Zhai [1 ]
Ran Zhang [1 ]
Shangyou Zhang [2 ]
机构
[1] School of Mathematics, Jilin University
[2] Department of Mathematical Sciences, University of Delaware
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition. We use the weak Galerkin method to discretize the Stokes equation and the mixed finite element method to discretize the Darcy equation. A discrete inf-sup condition is proved and the optimal error estimates are also derived. Numerical experiments validate the theoretical analysis.
引用
收藏
页码:2357 / 2380
页数:24
相关论文
共 50 条
[21]   Stabilized finite element method for the stationary mixed Stokes–Darcy problem [J].
Jiaping Yu ;
Md. Abdullah Al Mahbub ;
Feng Shi ;
Haibiao Zheng .
Advances in Difference Equations, 2018
[22]   Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes-Darcy Problem [J].
Li, Rui ;
Gao, Yali ;
Li, Jian ;
Chen, Zhangxin .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) :693-727
[23]   A two-grid decoupled penalty finite element method for the stationary Stokes-Darcy problem [J].
Han, Wei-Wei ;
Jiang, Yao-Lin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 136
[24]   A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS [J].
He, Kai ;
Chen, Junjie ;
Zhang, Li ;
Ran, Maohua .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) :459-475
[25]   A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS [J].
He, Kai ;
Chen, Junjie ;
Zhang, Li ;
Ran, Maohua .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (04) :459-475
[26]   Convergence of a Family of Galerkin Discretizations for the Stokes-Darcy Coupled Problem [J].
Gatica, Gabriel N. ;
Oyarzua, Ricardo ;
Sayas, Francisco-Javier .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) :721-748
[27]   New fully-mixed finite element methods for the Stokes-Darcy coupling [J].
Camano, Jessika ;
Gatica, Gabriel N. ;
Oyarzua, Ricardo ;
Ruiz-Baier, Ricardo ;
Venegas, Pablo .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :362-395
[28]   Nitsche's type stabilized finite element method for the fully mixed Stokes-Darcy problem with Beavers-Joseph conditions [J].
Yu, Jiaping ;
Sun, Yizhong ;
Shi, Feng ;
Zheng, Haibiao .
APPLIED MATHEMATICS LETTERS, 2020, 110
[29]   A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem [J].
Marco Discacciati ;
Ricardo Oyarzúa .
Numerische Mathematik, 2017, 135 :571-606
[30]   A weak Galerkin finite element method for the stokes equations [J].
Wang, Junping ;
Ye, Xiu .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (01) :155-174