CONVERGENCE OF AN EXPLICIT UPWIND FINITE ELEMENT METHOD TO MULTI-DIMENSIONAL CONSERVATION LAWS

被引:0
作者
Jinchao Xu Center for Computational Mathematics and Applications and Department of Mathematics Pennsylvania State University USA School of Mathematical Sciences Peking University Beijing China Lungan Ying School of Mathematical Scien [100871 ]
机构
关键词
Conservation law; Finite element method; Convergence;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
An explicit upwind finite element method is given for the numerical computation to multi-dimensional scalar conservation laws. It is proved that this Scheme is consistent to the equation and monotone, and the approximate solution satisfies discrete entropy inequality. To guarantee the limit of approximate solutions to be a measure valued solution, we prove an energy estimate. Then the LP strong convergence of this scheme is proved.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 8 条
[1]   A monotone finite element scheme for convection-diffusion equations [J].
Xu, JC ;
Zikatanov, L .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1429-1446
[2]   AN ERROR ESTIMATE FOR FINITE-VOLUME METHODS FOR MULTIDIMENSIONAL CONSERVATION-LAWS [J].
COCKBURN, B ;
COQUEL, F ;
LEFLOCH, P .
MATHEMATICS OF COMPUTATION, 1994, 63 (207) :77-103
[3]  
Convergence of Upwind Finite Volume Schemes for Scalar Conservation Laws in Two Dimensions[J] . Dietmar Kr?ner,Mirko Rokyta. SIAM Journal on Numerical Analysis . 1994 (2)
[4]  
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case[J] . Bernardo Cockburn,Suchung Hou,Chi-Wang Shu. Mathematics of Computation . 1990 (190)
[5]  
Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions[J] . Anders Szepessy. Mathematics of Computation . 1989 (188)
[6]  
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework[J] . Bernardo Cockburn,Chi-Wang Shu. Mathematics of Computation . 1989 (186)
[7]   ON THE CONVERGENCE OF A FINITE-ELEMENT METHOD FOR A NONLINEAR HYPERBOLIC CONSERVATION LAW [J].
JOHNSON, C ;
SZEPESSY, A .
MATHEMATICS OF COMPUTATION, 1987, 49 (180) :427-444
[8]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270