Invariant Measure for the Markov Process Corresponding to a PDE System

被引:0
作者
Fu Bao XI Department of Mathematics Beijing Institute of Technology Beijing P R China [100081 ]
机构
关键词
Feller continuity; Coupling; Invariant measure; Foster Lyapunov inequality; Large deviations;
D O I
暂无
中图分类号
O211.62 [马尔可夫过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
<正> In this paper, we consider the Markov process (X∈(t), Z∈(t)) corresponding to a weaklycoupled elliptic PDE system with a small parameter∈>0. We first prove that (X∈(t), Z∈(t)) has theFeller continuity by the coupling method, and then prove that (X∈(t), Z∈(t)) has an invariant measureμ∈(·) by the Foster-Lyapunov inequality. Finally, we establish a large deviations principle for μ∈(·) asthe small parameter ∈ tends to zero.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 4 条
[1]   带小扰动的随机发展方程的不变测度 [J].
席福宝 .
数学学报, 2004, (01) :197-202
[2]  
Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes[J] . Sean P. Meyn,R. L. Tweedie.Advances in Applied Probability . 1993 (3)
[3]   LARGE DEVIATIONS FOR MARKOV-PROCESSES CORRESPONDING TO PDE SYSTEMS [J].
EIZENBERG, A ;
FREIDLIN, M .
ANNALS OF PROBABILITY, 1993, 21 (02) :1015-1044
[4]   A LARGE DEVIATIONS PRINCIPLE FOR SMALL PERTURBATIONS OF RANDOM EVOLUTION-EQUATIONS [J].
BEZUIDENHOUT, C .
ANNALS OF PROBABILITY, 1987, 15 (02) :646-658