Derived representation type and Gorenstein projective modules of an algebra under crossed product

被引:0
作者
LI Fang
SUN LongGang
机构
[1] DepartmentofMathematics,ZhejiangUniversity
关键词
finite Cohen-Macaulay type; crossed product; derived representation type; Gorenstein projective module;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
Let H and its dual H* be finite dimensional semisimple Hopf algebras. In this paper, we firstly prove that the derived representation types of an algebra A and the crossed product algebra A#σH are coincident. This is an improvement of the conclusion about representation type of an algebra in Li and Zhang [Sci China Ser A, 2006, 50: 1-13]. Secondly, we give the relationship between Gorenstein projective modules over A and that over A#σH. Then, using this result, it is proven that A is a finite dimensional CM-finite Gorenstein algebra if and only if so is A#σH.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 4 条
[1]   Gorenstein injective and projective modules and actions of finite-dimensional Hopf algebras [J].
Antonio Lopez-Ramos, Juan .
ARKIV FOR MATEMATIK, 2008, 46 (02) :349-361
[2]   An Auslander-type result for Gorenstein-projective modules [J].
Chen, Xiao-Wu .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :2043-2050
[3]   Ω-Gorenstein projective and flat covers and Ω-Gorenstein injective envelopes [J].
Enochs, EE ;
Jenda, OMG .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) :1453-1470
[4]  
Gorenstein injective and projective modules[J] . Edgar E. Enochs,Overtoun M. G. Jenda.Mathematische Zeitschrift . 1995 (1)