Nevanlinna theory through the Brownian motion

被引:0
|
作者
Xianjing Dong [1 ]
Yan He [2 ]
Min Ru [2 ]
机构
[1] Department of Mathematics, Nanjing University
[2] Department of Mathematics, University of Houston
关键词
Nevanlinna theory; holomorphic curves; second main theorem; Brownian motion;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)]; O174.52 [整数函数论、亚纯函数论(半纯函数论)];
学科分类号
020208 ; 070103 ; 070104 ; 0714 ;
摘要
In this paper, we introduce the Nevanlinna theory using stochastic calculus, following the works of Davis(1975), Carne(1986) and Atsuji(1995, 2005, 2008 and 2017), etc. In particular, we give(another) proofs of the classical result of Nevanlinna for meromorphic functions and the result of Cartan-Ahlfors for holomorphic curves by using the probabilistic method.
引用
收藏
页码:2131 / 2154
页数:24
相关论文
共 50 条
  • [41] Brownian motion of a torus
    Thaokar, Rochish M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 317 (1-3) : 650 - 657
  • [42] Brownian Motion of Graphene
    Marago, Onofrio M.
    Bonaccorso, Francesco
    Saija, Rosalba
    Privitera, Giulia
    Gucciardi, Pietro G.
    Iati, Maria Antonia
    Calogero, Giuseppe
    Jones, Philip H.
    Borghese, Ferdinando
    Denti, Paolo
    Nicolosi, Valeria
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (12) : 7515 - 7523
  • [43] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [44] Quantization of Brownian motion
    Rabei, Eqab M.
    Ajlouni, Abdul-Wali
    Ghassib, Humam B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) : 1619 - 1629
  • [45] Coupled Brownian Motion
    Sempi, Carlo
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 569 - 574
  • [46] Relativistic Brownian motion
    Dunkel, Joern
    Haenggi, Peter
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (01): : 1 - 73
  • [47] A continuous non-Brownian motion martingale with Brownian motion marginal distributions
    Albin, J. M. P.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) : 682 - 686
  • [48] The Generalized “Position–Momentum” Uncertainty Relation in Quantum Mechanics and in the Theory of Brownian Motion
    A. D. Sukhanov
    Theoretical and Mathematical Physics, 2004, 139 : 557 - 570
  • [49] A note on the long time asymptotics of the Brownian motion with application to the theory of quantum measurement
    Kolokoltsov, VN
    POTENTIAL ANALYSIS, 1997, 7 (04) : 759 - 764
  • [50] A Note on the Long Time Asymptotics of the Brownian Motion with Application to the Theory of Quantum Measurement
    Vassili N. Kolokoltsov
    Potential Analysis, 1997, 7 : 759 - 764