Nontrivial Topological States in BaSn5 Superconductor Probed by de Haas–van Alphen Quantum Oscillations

被引:0
|
作者
韩李雪松 [1 ]
石贤彪 [2 ,3 ]
焦金龙 [4 ]
于振海 [1 ]
王霞 [1 ,5 ]
余娜 [1 ,5 ]
邹志强 [1 ,5 ]
马杰 [4 ]
赵维巍 [2 ,3 ]
夏威 [1 ,6 ]
郭艳峰 [1 ,6 ]
机构
[1] School of Physical Science and Technology, Shanghai Tech University
[2] State Key Laboratory of Advanced Welding & Joining and Flexible Printed Electronics Technology Center, Harbin Institute of Technology
[3] Shenzhen Key Laboratory of Flexible Printed Electronics Techniology, Harbin Institute of Technology
[4] Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University
[5] Analytical Instrumentation Center, School of Physical Science and Technology, Shanghai Tech University
[6] Shanghai Tech Laboratory for Topological Physics, Shanghai Tech University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report the nontrivial topological states in an intrinsic type-Ⅱ superconductor BaSn5(Tc~4.4 K) probed by measuring the magnetization, specific heat, de Haas–van Alphen(d Hv A) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the H point in the kz= π plane of the Brillouin zone, which could be gapped by spin-orbit coupling(SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the Γ–A direction, located at ~0.2 eV above the Fermi level. The analysis of the d Hv A quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.
引用
收藏
页码:40 / 46
页数:7
相关论文
共 50 条
  • [21] Shubnikov-de-Haas and de-Haas-van-Alphen oscillations in silicon nanostructures
    Bagraev, N. T.
    Brilinskaya, E. S.
    Gets, D. S.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Romanov, V. V.
    SEMICONDUCTORS, 2011, 45 (11) : 1447 - 1452
  • [22] Shubnikov-de-Haas and de-Haas-van-Alphen oscillations in silicon nanostructures
    N. T. Bagraev
    E. S. Brilinskaya
    D. S. Gets
    L. E. Klyachkin
    A. M. Malyarenko
    V. V. Romanov
    Semiconductors, 2011, 45 : 1447 - 1452
  • [23] Quasi-two-dimensional relativistic fermions probed by de Haas-van Alphen quantum oscillations in LuSn2
    Zhu, Yanglin
    Hu, Jin
    Graf, David
    Gui, Xin
    Xie, Weiwei
    Mao, Zhiqiang
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [24] Quantum Oscillations without a Fermi Surface and the Anomalous de Haas-van Alphen Effect
    Knolle, Johannes
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2015, 115 (14)
  • [25] de Haas-van Alphen effect and quantum oscillations as a function of temperature in correlated insulators
    Zyuzin, Vladimir A.
    PHYSICAL REVIEW B, 2024, 109 (23)
  • [26] DE HAAS-VAN-ALPHEN OSCILLATIONS IN IN-2 BI
    ANDERSON, JR
    CHUNG, DY
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 391 - 391
  • [27] A damping of the de Haas-van!Alphen oscillations in the superconducting state
    Duncan, KP
    Györffy, BL
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (02) : 239 - 247
  • [28] Chemical potential oscillations and de Haas-van Alphen effect
    Champel, T
    PHYSICAL REVIEW B, 2001, 64 (05):
  • [29] Fermi surface mapping of the kagome superconductor RbV3Sb5 using de Haas-van Alphen oscillations
    Shrestha, Keshav
    Shi, Mengzhu
    Nguyen, Thinh
    Miertschin, Duncan
    Fan, Kaibao
    Deng, Liangzi
    Graf, David E.
    Chen, Xianhui
    Chu, Ching -Wu
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [30] de Haas-van Alphen quantum oscillations and electronic structure in the large-Chern-number topological chiral semimetal CoSi
    Wang, Huan
    Xu, Sheng
    Lu, Xiao-Qin
    Wang, Xiao-Yan
    Zeng, Xiang-Yu
    Lin, Jun-Fa
    Liu, Kai
    Lu, Zhong-Yi
    Xia, Tian-Long
    PHYSICAL REVIEW B, 2020, 102 (11)