Artificial intelligence in drug design

被引:0
作者
Feisheng Zhong [1 ,2 ]
Jing Xing [1 ,2 ]
Xutong Li [1 ,2 ]
Xiaohong Liu [1 ,3 ]
Zunyun Fu [1 ,2 ]
Zhaoping Xiong [1 ,3 ]
Dong Lu [1 ,2 ]
Xiaolong Wu [1 ,2 ]
Jihui Zhao [1 ,2 ]
Xiaoqin Tan [1 ,2 ]
Fei Li [1 ,4 ]
Xiaomin Luo [1 ]
Zhaojun Li [5 ]
Kaixian Chen [1 ,3 ]
Mingyue Zheng [1 ]
Hualiang Jiang [1 ,3 ]
机构
[1] Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
[2] School of Pharmacy, University of Chinese Academy of Sciences
[3] School of Life Science and Technology, ShanghaiTech University
[4] Department of Chemistry, College of Sciences, Shanghai University
[5] School of Information Management, Dezhou University
关键词
drug design; artificial intelligence; deep learning; QSAR; ADME/T;
D O I
暂无
中图分类号
R91 [药物基础科学];
学科分类号
1007 ;
摘要
Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design.
引用
收藏
页码:1191 / 1204
页数:14
相关论文
共 65 条
[1]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[2]   SCScore: Synthetic Complexity Learned from a Reaction Corpus [J].
Coley, Connor W. ;
Rogers, Luke ;
Green, William H. ;
Jensen, Klavs F. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) :252-261
[3]   Inner and Outer Recursive Neural Networks for Chemoinformatics Applications [J].
Urban, Gregor ;
Subrahmanya, Niranjan ;
Badi, Pierre .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) :207-211
[4]   The target landscape of clinical kinase drugs [J].
Klaeger, Susan ;
Heinzlmeir, Stephanie ;
Wilhelm, Mathias ;
Polzer, Harald ;
Vick, Binje ;
Koenig, Paul-Albert ;
Reinecke, Maria ;
Ruprecht, Benjamin ;
Petzoldt, Svenja ;
Meng, Chen ;
Zecha, Jana ;
Reiter, Katrin ;
Qiao, Huichao ;
Helm, Dominic ;
Koch, Heiner ;
Schoof, Melanie ;
Canevari, Giulia ;
Casale, Elena ;
Depaolini, Stefania Re ;
Feuchtinger, Annette ;
Wu, Zhixiang ;
Schmidt, Tobias ;
Rueckert, Lars ;
Becker, Wilhelm ;
Huenges, Jan ;
Garz, Anne-Kathrin ;
Gohlke, Bjoern-Oliver ;
Zolg, Daniel Paul ;
Kayser, Gian ;
Vooder, Tonu ;
Preissner, Robert ;
Hahne, Hannes ;
Tonisson, Neeme ;
Kramer, Karl ;
Goetze, Katharina ;
Bassermann, Florian ;
Schlegl, Judith ;
Ehrlich, Hans-Christian ;
Aiche, Stephan ;
Walch, Axel ;
Greif, Philipp A. ;
Schneider, Sabine ;
Felder, Eduard Rudolf ;
Ruland, Juergen ;
Medard, Guillaume ;
Jeremias, Irmela ;
Spiekermann, Karsten ;
Kuster, Bernhard .
SCIENCE, 2017, 358 (6367)
[5]   Molecular de-novo design through deep reinforcement learning [J].
Olivecrona, Marcus ;
Blaschke, Thomas ;
Engkvist, Ola ;
Chen, Hongming .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[6]  
A review of network-based approaches to drug repositioning[J] . Lotfi Shahreza Maryam,Ghadiri Nasser,Mousavi Sayed Rasoul,Varshosaz Jaleh,Green James R.Briefings in bioinformatics . 2017 (5)
[7]   A comprehensive map of molecular drug targets [J].
Santos, Rita ;
Ursu, Oleg ;
Gaulton, Anna ;
Bento, A. Patricia ;
Donadi, Ramesh S. ;
Bologa, Cristian G. ;
Karlsson, Anneli ;
Al-Lazikani, Bissan ;
Hersey, Anne ;
Oprea, Tudor I. ;
Overington, John P. .
NATURE REVIEWS DRUG DISCOVERY, 2017, 16 (01) :19-34
[8]   Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches [J].
Subramanian, Govindan ;
Ramsundar, Bharath ;
Pande, Vijay ;
Denny, Rajiah Aldrin .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (10) :1936-1949
[9]   A simple model predicts UGT-mediated metabolism [J].
Dang, Na Le ;
Hughes, Tyler B. ;
Krishnamurthy, Varun ;
Swamidass, S. Joshua .
BIOINFORMATICS, 2016, 32 (20) :3183-3189
[10]  
Descriptors and their selection methods in QSAR analysis: paradigm for drug design[J] . Danishuddin,Asad U. Khan.Drug Discovery Today . 2016 (8)