Curvature Compensated CMOS Bandgap Reference with Novel Process Variation Calibration Technique

被引:0
|
作者
Jiancheng Zhang [1 ,2 ]
Mao Ye [1 ,2 ]
Yiqiang Zhao [1 ,2 ]
Gongyuan Zhao [1 ,2 ]
机构
[1] Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology,Tianjin University
基金
中国国家自然科学基金;
关键词
bandgap; reference voltage; process variation; resistance-trimming; current-calibration; curvature compensation; temperature coefficient;
D O I
10.15918/j.jbit1004-0579.201827.0204
中图分类号
TN432 [场效应型];
学科分类号
080903 ; 1401 ;
摘要
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10;/℃-9. 56 × 10;/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10;/℃.
引用
收藏
页码:182 / 188
页数:7
相关论文
共 50 条
  • [41] A Novel Sub-1 Volt Bandgap Reference with all CMOS
    Somvanshi, Sameer
    Bose, S. C.
    Gupta, Anu
    PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS: NEW ASPECTS OF CIRCUITS, 2008, : 232 - +
  • [42] A Curvature Compensation Technique for Low-Voltage Bandgap Reference
    Shen, Jie
    Chen, Houpeng
    Ni, Shenglan
    Song, Zhitang
    ENERGIES, 2021, 14 (21)
  • [43] A Sub-1 ppm/°C CMOS Bandgap Voltage Reference With Process Tolerant Piecewise Second-Order Curvature Compensation
    Ahn, Yongjoon
    Kim, Suhwan
    Lee, Hyunjoong
    2020 IEEE 33RD INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2020, : 231 - 235
  • [44] Design of high performance bandgap reference based on piecewise temperature curvature compensated technology
    Dai G.-D.
    Xu Y.
    Li W.-M.
    Huang P.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2010, 44 (11): : 2142 - 2147
  • [45] A high-precision voltage reference with a curvature-compensated bandgap for fluorescence detection
    Xiong, Bingjun
    Mo, Wenji
    Yan, Feng
    Guan, Jian
    Ge, Weijie
    Liu, Jingjing
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2024, 52 (11) : 5437 - 5449
  • [46] A high precision logarithmic-curvature compensated all CMOS voltage reference
    Tayebeh Ghanavati Nejad
    Ebrahim Farshidi
    Henrik Sjöland
    Abdolnabi Kosarian
    Analog Integrated Circuits and Signal Processing, 2019, 99 : 383 - 392
  • [47] A high precision logarithmic-curvature compensated all CMOS voltage reference
    Ghanavati Nejad, Tayebeh
    Farshidi, Ebrahim
    Sjoland, Henrik
    Kosarian, Abdolnabi
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2019, 99 (02) : 383 - 392
  • [48] Design of a All-CMOS Second-Order Temperature Compensated Bandgap Reference
    Yu, Jianhai
    Peng, Guojin
    Wang, Kuikui
    Lv, Meini
    WIRELESS AND SATELLITE SYSTEMS, PT II, 2019, 281 : 100 - 108
  • [49] A Curvature-compensation Bandgap Voltage Reference with Programmable Trimming Technique
    Liu, Luncai
    Huang, Xiaozong
    Zhang, Jing
    Huang, Wengang
    2011 INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2011,
  • [50] A 3.2 ppm/°C curvature-compensated bandgap reference with wide supply voltage range
    Zhou, Ze-Kun
    Ou, Xue-Chun
    Shi, Yue
    Zhu, Pei-Sheng
    Ma, Ying-Qian
    Qiu, Shi
    Ming, Xin
    Zhang, Bo
    MICROELECTRONICS JOURNAL, 2012, 43 (11) : 863 - 868