边界退化的对流扩散方程

被引:21
作者
詹华税 [1 ]
袁洪君 [2 ]
机构
[1] 厦门理工学院应用数学学院
[2] 吉林大学数学学院
基金
高等学校博士学科点专项科研基金;
关键词
弱解; Fichera函数; 边界退化; 初边值问题;
D O I
10.13413/j.cnki.jdxblxb.2015.03.01
中图分类号
O175.2 [偏微分方程];
学科分类号
070104 ;
摘要
考虑对流扩散方程:Nbui(u)t=div(ρα|▽u| p-2▽u)+∑Ni=bi(u)/xi,(x,t)∈QT=Ω×(0,T)其中对流项∑Ni=bi(u)/xi满足bi(s)≤c|s|1+β,b′i(s)≤c|s|β.利用抛物正则化方法讨论该对流方程初边值问题解的定义,并在(p-2)/2>α>1下证明该问题存在唯一的弱解.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 7 条
[1]   对流扩散方程的解 [J].
詹华税 .
数学年刊A辑(中文版), 2013, 34 (02) :235-256
[2]   具非线性边值条件的发展型p-Laplace方程解在有限时刻的爆破性和有界性 [J].
王建 ;
高文杰 .
吉林大学学报(理学版), 2005, (04) :395-401
[3]  
PROPERTIES OF THE BOUNDARY FLUX OF A SINGULAR DIFFUSION PROCESS[J]. YIN JINGXUE WANG CHUNPENG Department of Mathematics, Jilin University, Changchun 130012, China. Department of Mathematics, Jilin University, Changchun 130012, China..Chinese Annals of Mathematics. 2004(02)
[4]   Continuous Solutions of the First Boundary Value Problems for Nonlinear Diffusion Equations [J].
Yin Jingxue Department of Mathematics Jilin University Changchun China .
Acta Mathematica Sinica(New Series), 1994, 10 (01) :64-71
[5]  
Homogeneous Dirichlet condition of an anisotropic degenerate parabolic equation[J] . Huashui Zhan.Boundary Value Problems . 2015 (1)
[6]  
The asymptotic behavior of the solution of a doubly degenerate parabolic equation with the convection term[J] . Huashui Zhan,Bifen Xu.Journal of Inequalities and Applications . 2012 (1)
[7]   A class of degenerate diffusion equations with mixed boundary conditions [J].
Wang, J ;
Wang, ZJ ;
Yin, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :589-603