ON INDECOMPOSABLE MODULES OVER A REPRESENTATION-FINITE TRIVIAL EXTENSION ALGEBRA

被引:0
|
作者
肖杰
机构
[1] Beijing Normal University
[2] Beijing 100878
[3] PRC
[4] Department of Mathematics
基金
中国国家自然科学基金;
关键词
representation-finite; trivial extension; Auslander-Reiten quiver; Loewy factors;
D O I
暂无
中图分类号
学科分类号
摘要
Let T(A)=A?D(A) be a representation-finite trivial extension algebra. We haveproved: (i) every indecomposable module of T(A) is determined by its top and socle, (ii)every indecomposable module of T(A) is determined by its Loewy factors and socal factorsrespectively.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条