Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation

被引:0
作者
He-Liang Huang [1 ]
Xiao-Yue Xu [1 ]
Chu Guo [1 ]
Guojing Tian [2 ,3 ]
Shi-Jie Wei [4 ]
Xiaoming Sun [2 ,3 ]
Wan-Su Bao [1 ]
Gui-Lu Long [4 ,5 ]
机构
[1] Henan Key Laboratory of Quantum Information and Cryptography
[2] State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
[3] School of Computer Science and Technology, University of Chinese Academy of Sciences
[4] Beijing Academy of Quantum Information Sciences
[5] Department of Physics, Tsinghua University
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
070201 ;
摘要
Quantum computing is a game-changing technology for global academia, research centers and industries including computational science, mathematics, fnance, pharmaceutical, materials science, chemistry and cryptography. Although it has seen a major boost in the last decade, we are still a long way from reaching the maturity of a full-fedged quantum computer. That said, we will be in the noisy-intermediate scale quantum(NISQ) era for a long time, working on dozens or even thousands of qubits quantum computing systems. An outstanding challenge, then, is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise. To address this challenge, several nearterm quantum computing techniques, including variational quantum algorithms, error mitigation, quantum circuit compilation and benchmarking protocols, have been proposed to characterize and mitigate errors, and to implement algorithms with a certain resistance to noise, so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications. Besides, the development of near-term quantum devices is inseparable from the efcient classical simulation, which plays a vital role in quantum algorithm design and verifcation, error-tolerant verifcation and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques, report on their progress, and fnally discuss the future prospect of these techniques, which we hope will motivate researchers to undertake additional studies in this field.
引用
收藏
页码:27 / 76
页数:50
相关论文
共 83 条
[1]  
Mitigating algorithmic errors in quantum optimization through energy extrapolation[J] . Cao Chenfeng,Yu Yunlong,Wu Zipeng,Shannon Nic,Zeng Bei,Joynt Robert.Quantum Science & Technology . 2023 (1)
[2]   Fundamental limits of quantum error mitigation [J].
Takagi, Ryuji ;
Endo, Suguru ;
Minagawa, Shintaro ;
Gu, Mile .
NPJ QUANTUM INFORMATION, 2022, 8 (01)
[3]   Variational quantum eigensolver with reduced circuit complexity [J].
Zhang, Yu ;
Cincio, Lukasz ;
Negre, Christian F. A. ;
Czarnik, Piotr ;
Coles, Patrick J. ;
Anisimov, Petr M. ;
Mniszewski, Susan M. ;
Tretiak, Sergei ;
Dub, Pavel A. .
NPJ QUANTUM INFORMATION, 2022, 8 (01)
[4]   Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases [J].
Herrmann, Johannes ;
Llima, Sergi Masot ;
Remm, Ants ;
Zapletal, Petr ;
McMahon, Nathan A. ;
Scarato, Colin ;
Swiadek, Francois ;
Andersen, Christian Kraglund ;
Hellings, Christoph ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Lazar, Stefania ;
Kerschbaum, Michael ;
Zanuz, Dante Colao ;
Norris, Graham J. ;
Hartmann, Michael J. ;
Wallraff, Andreas ;
Eichler, Christopher .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Entangling Quantum Generative Adversarial Networks [J].
Niu, Murphy Yuezhen ;
Zlokapa, Alexander ;
Broughton, Michael ;
Boixo, Sergio ;
Mohseni, Masoud ;
Smelyanskyi, Vadim ;
Neven, Hartmut .
PHYSICAL REVIEW LETTERS, 2022, 128 (22)
[6]   Quantum computational advantage with a programmable photonic processor [J].
Madsen, Lars S. ;
Laudenbach, Fabian ;
Askarani, Mohsen Falamarzi. ;
Rortais, Fabien ;
Vincent, Trevor ;
Bulmer, Jacob F. F. ;
Miatto, Filippo M. ;
Neuhaus, Leonhard ;
Helt, Lukas G. ;
Collins, Matthew J. ;
Lita, Adriana E. ;
Gerrits, Thomas ;
Nam, Sae Woo ;
Vaidya, Varun D. ;
Menotti, Matteo ;
Dhand, Ish ;
Vernon, Zachary ;
Quesada, Nicolas ;
Lavoie, Jonathan .
NATURE, 2022, 606 (7912) :75-+
[7]   Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method [J].
Pan, Feng ;
Zhang, Pan .
PHYSICAL REVIEW LETTERS, 2022, 128 (03)
[8]   Analyzing the performance of variational quantum factoring on a superconducting quantum processor [J].
Karamlou, Amir H. ;
Simon, William A. ;
Katabarwa, Amara ;
Scholten, Travis L. ;
Peropadre, Borja ;
Cao, Yudong .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[9]   Absence of Barren Plateaus in Quantum Convolutional Neural Networks [J].
Pesah, Arthur ;
Cerezo, M. ;
Wang, Samson ;
Volkoff, Tyler ;
Sornborger, Andrew T. ;
Coles, Patrick J. .
PHYSICAL REVIEW X, 2021, 11 (04)
[10]   Globally Optimizing QAOA Circuit Depth for Constrained Optimization Problems [J].
Herrman, Rebekah ;
Treffert, Lorna ;
Ostrowski, James ;
Lotshaw, Phillip C. ;
Humble, Travis S. ;
Siopsis, George .
ALGORITHMS, 2021, 14 (10)