APPROXIMATION OF A CAUCHY-JENSEN ADDITIVE FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

被引:0
作者
Hassan Azadi Kenary [1 ]
机构
[1] Department of Mathematics,College of Sciences,Yasouj University,Yasouj 75914-353,Iran
关键词
Hyers-Ulam stability; Cauchy-Jensen additive functional equation; fixed point; non-Archimedean normed spaces;
D O I
暂无
中图分类号
O174 [函数论]; O177.91 [非线性泛函分析];
学科分类号
070104 ;
摘要
Using the fixed point and direct methods,we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f p i=1 xi + q j=1 yj + 2 d k=1 zk 2 = p i=1 f(xi) + q j=1 f(yj) + 2 d k=1 f(zk),where p,q,d are integers greater than 1,in non-Archimedean normed spaces.
引用
收藏
页码:2247 / 2258
页数:12
相关论文
共 8 条
  • [1] Stability of a functional inequality associated with the Jordan – von Neumann functional equation[J] . W?odzimierz Fechner. Aequationes mathematicae . 2006 (1)
  • [2] On the representation of non-Archimedean objects[J] . Didier Deses. Topology and its Applications . 2005 (5)
  • [3] On some non-Archimedean spaces of Alexandroff and Urysohn
    Nyikos, PJ
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1999, 91 (01) : 1 - 23
  • [4] Tensor Products of Non-Archimedean Weighted Spaces of Continuous Functions[J] . A. K. Katsaras,A. Beloyiannis. Georgian Mathematical Journal . 1999 (1)
  • [5] Remarks on the stability of functional equations[J] . Piotr W. Cholewa. Aequationes Mathematicae . 1984 (1)
  • [6] Proprieta’ locali e approssimazione di operatori[J] . Fulvia Skof. Rendiconti del Seminario Matematico e Fisico di Milano . 1983 (1)
  • [7] On the stability of the linear mapping in Banach spaces[J] . Themistocles M. Rassias. proc . 1978 (2)
  • [8] On the stability of the Cauchy functional equation:a fixed point approach in Iteration Theory (ECIT 02) .2 I. Cadariu,V. Radu. Grazer Math. Berichte . 2004