Anisotropic singular integrals in product spaces

被引:0
|
作者
BOWNIK Marcin [1 ]
机构
[1] Department of Mathematics, University of Oregon
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
expansive dilation; Muckenhoupt weight; product space; Hardy space; bump function; singular integral;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce a class of product anisotropic singular integral operators, whose kernels are adapted to the action of a pair A := (A1, A2) of expansive dilations on R n and R m , respectively. This class is a generalization of product singular integrals with convolution kernels introduced in the isotropic setting by Fefferman and Stein. The authors establish the boundedness of these operators in weighted Lebesgue and Hardy spaces with weights in product A∞ Muckenhoupt weights on R n × R m . These results are new even in the unweighted setting for product anisotropic Hardy spaces.
引用
收藏
页码:3163 / 3178
页数:16
相关论文
共 50 条
  • [1] Anisotropic singular integrals in product spaces
    Li BaoDe
    Bownik, Marcin
    Yang DaChun
    Zhou Yuan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3163 - 3178
  • [2] Anisotropic singular integrals in product spaces
    BaoDe Li
    Marcin Bownik
    DaChun Yang
    Yuan Zhou
    Science China Mathematics, 2010, 53 : 3163 - 3178
  • [3] Singular integrals on product domains
    F. Weisz
    Archiv der Mathematik, 2001, 77 : 328 - 336
  • [4] BOUNDEDNESS OF SINGULAR INTEGRALS IN HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Hu, Guoen
    Yang, Dachun
    Zhou, Yuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (01): : 91 - 135
  • [5] BOUNDEDNESS OF SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS ON TRIEBEL-LIZORKIN SPACES
    Zhang, Chunjie
    Chen, Jiecheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (02) : 157 - 168
  • [6] Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2611 - 2661
  • [7] Singular Integrals in Quantum Euclidean Spaces
    Gonzalez-Perez, Adrian Manuel
    Junge, Marius
    Parcet, Javier
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 272 (1334) : VII - +
  • [8] Weighted anisotropic product Hardy spaces and boundedness of sublinear operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 392 - 442
  • [9] Compactness of Commutators for Singular Integrals on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02): : 257 - 281
  • [10] LP boundedness of singular integrals on product domains
    Chen, JC
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (06): : 681 - 689