Asymptotically efficient parameter estimation for ordinary differential equations

被引:0
|
作者
PANG TianXiao [1 ]
YAN PeiSi [2 ]
ZHOU Harrison H. [3 ]
机构
[1] School of Mathematical Sciences, Zhejiang University
[2] Center for Computing and Visualization, Brown University
[3] Department of Statistics and Data Science, Yale University
基金
美国国家科学基金会;
关键词
asymptotic efficiency; consistency; generalized profiling procedure; ordinary differential equations; splines;
D O I
暂无
中图分类号
O175.1 [常微分方程];
学科分类号
摘要
Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate for statistical inference. Ramsay et al.(2007) proposed a generalized profiling procedure. It is easily implementable and has been demonstrated to have encouraging numerical performance. However, little is known about statistical properties of this procedure. In this paper, we provide a theoretical justification of the generalized profiling procedure. Under some regularity conditions, the procedure is shown to be consistent for a broad range of tuning parameters. When the tuning parameters are sufficiently large, the procedure can be further shown to be asymptotically normal and efficient.
引用
收藏
页码:2263 / 2286
页数:24
相关论文
共 50 条
  • [1] Asymptotically efficient parameter estimation for ordinary differential equations
    Pang TianXiao
    Yan PeiSi
    Zhou, Harrison H.
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2263 - 2286
  • [2] Asymptotically efficient parameter estimation for ordinary differential equations
    TianXiao Pang
    PeiSi Yan
    Harrison H. Zhou
    Science China Mathematics, 2017, 60 : 2263 - 2286
  • [3] Parameter estimation of ordinary differential equations
    Li, ZF
    Osborne, MR
    Prvan, T
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (02) : 264 - 285
  • [4] A variational approach to parameter estimation in ordinary differential equations
    Kaschek, Daniel
    Timmer, Jens
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [5] Parameter estimation for high dimensional ordinary differential equations
    Xue, Hongqi
    Linel, Patrice
    Chen, Jinhai
    Yuan, Ya-xiang
    Wu, Hulin
    INFORMATION TECHNOLOGY, 2015, : 273 - 279
  • [6] A preprocessing method for parameter estimation in ordinary differential equations
    Strebel, Oliver
    CHAOS SOLITONS & FRACTALS, 2013, 57 : 93 - 104
  • [7] The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations
    Castell, F
    Gaines, J
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1996, 32 (02): : 231 - 250
  • [8] A Decomposition Approach for Parameter Estimation of System of Ordinary Differential Equations
    Dua, Vivek
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 361 - 366
  • [9] A tracking approach to parameter estimation in linear ordinary differential equations
    Brunel, Nicolas J. B.
    Clairon, Quentin
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2903 - 2949
  • [10] A Bayesian Collocation Integral Method for Parameter Estimation in Ordinary Differential Equations
    Xu, Mingwei
    Wong, Samuel W. K.
    Sang, Peijun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (03) : 845 - 854