Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect

被引:0
|
作者
Shao-Xian Li [1 ]
Hong-Wei Zhao [2 ]
Jia-Guang Han [1 ]
机构
[1] Center for Terahertz wave,Key laboratory of Opto-electronic Information Science and Technology,Ministry of Education,College of Precision Instrument and Optoelectronics Engineering,Tianjin University
[2] Key Laboratory of Interfacial Physics and Technology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences
关键词
Chemical and biological sensors; metamaterials; mode coupling; terahertz;
D O I
暂无
中图分类号
TP212 [发送器(变换器)、传感器];
学科分类号
080202 ;
摘要
A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency(EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamaterial sensor, which consists of an EIT element unit with a cut-wire metallic resonator and two split-ring metallic resonators fabricated on a 490-μm thick silicon substrate, operates in a transmission geometry. The EIT peak was red-shifted and decreased with the increase of the water volume. A maximum redshift about 54 GHz of the EIT peak was detected between the 1,4-dioxane and water. The presented linear behavior and high sensitivity of the EIT peak depending on the water concentration pave a novel avenue for sensor applications.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 50 条
  • [1] Terahertz metamaterial sensor based on electromagnetically induced transparency effect
    Li, Shao-Xian
    Zhao, Hong-Wei
    Han, Jia-Guang
    Journal of Electronic Science and Technology, 2015, 13 (02) : 117 - 121
  • [2] Imidacloprid Detection Using Terahertz Metamaterial Based on Electromagnetically Induced Transparency
    Yu, Jiaojiao
    Liu, Gan
    Zhang, Xuan
    Qin, Jianyuan
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2025, 15 (01) : 37 - 44
  • [3] A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance
    Pan, Wu
    Yan, Yanjun
    Ma, Yong
    Shen, Dajun
    OPTICS COMMUNICATIONS, 2019, 431 : 115 - 119
  • [4] Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect
    Gao, Liang
    Feng, Chao
    Li, Yongfu
    Chen, Xiaohan
    Wang, Qingpu
    Zhao, Xian
    NANOMATERIALS, 2022, 12 (20)
  • [5] Metamaterial Sensor With Large Incident Angle Based on Electromagnetically Induced Transparency Effect
    Chen, Mingming
    Yang, Xue-Xia
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 22451 - 22458
  • [6] Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial
    Zhang, Huiyun
    Zhang, Xiaoqiuyan
    Cao, Yanyan
    Zeng, Beibei
    Zhou, Mingdong
    Zhang, Yuping
    MATERIALS RESEARCH EXPRESS, 2017, 4 (01):
  • [7] Tunable Electromagnetically Induced Transparency Based on Indium Antimonide Terahertz Metamaterial
    Li Hongyang
    Huang Wei
    Zhang Yuting
    Yin Shan
    Zhang Wentao
    Du Hao
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (05)
  • [8] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [9] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [10] Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial
    Pitchappa, Prakash
    Manjappa, Manukumara
    Ho, Chong Pei
    Singh, Ranjan
    Singh, Navab
    Lee, Chengkuo
    ADVANCED OPTICAL MATERIALS, 2016, 4 (04): : 541 - 547