FINDING THE STRICTLY LOCAL AND ε-GLOBAL MINIMIZERS OF CONCAVE MINIMIZATION WITH LINEAR CONSTRAINTS

被引:0
作者
Patrice Marcotte (Centre de Recherche sur Les Transports
Universit de Montr al
Queb c
Canada)Shi-quan Wu (Probability Laboratory
Institute of Applied Mathematics
Chinese Academy of Sciences
Beijing
China)
机构
关键词
NLP; GLOBAL MINIMIZERS OF CONCAVE MINIMIZATION WITH LINEAR CONSTRAINTS; Pro; PI; FINDING THE STRICTLY LOCAL AND;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper considers the concave minimization problem with linear constrailits,proposes a technique which may avoid the unsuitable Karush-Kuhn-Tucker poiats,then combines this technique with nank-Wolfe method and simplex method to form a pivoting method which can determine a strictly local minimizer of the problem in a finite number of iterations. Basing on strictly local minimizers, a new cutting plane method is proposed. Under some mild conditions, the new cutting plane method is proved to be finitely terminated at an θ-global minimizer of the problem.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 4 条
[1]  
On the solution of concave knapsack problems[J] . Jorge J. Moré,Stephen A. Vavasis. Mathematical Programming . 1990 (1)
[2]   SOME NP-COMPLETE PROBLEMS IN QUADRATIC AND NONLINEAR-PROGRAMMING [J].
MURTY, KG ;
KABADI, SN .
MATHEMATICAL PROGRAMMING, 1987, 39 (02) :117-129
[3]  
Reverse convex programming[J] . Richard J. Hillestad,Stephen E. Jacobsen. Applied Mathematics & Optimization . 1986 (1)
[4]  
Linear programs with an additional reverse convex constraint[J] . Richard J. Hillestad,Stephen E. Jacobsen. Applied Mathematics & Optimization . 1986 (1)