An Automatic Forecasting Method for Time Series

被引:0
作者
LIU Shufen
GU Songyuan
BAO Tie
机构
[1] CollegeofComputerScienceandTechnology,JilinUniversity
关键词
Time series; Automatic forecasting; Unit root test; Autoregressive integrated moving average(ARIMA) model;
D O I
暂无
中图分类号
O211.61 [平稳过程与二阶矩过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An automatic forecasting method is proposed concerning automation problem in the field of linear time series forecasting. The method is on the basis of econometric theory and overcomes the difficulty to mine and forecast automatically with econometric models. The proposed algorithm is divided into 4 stages, i.e. preprocessing, unit root testing and stationary processing, modeling,and ultimately forecasting. Future values and trends would be estimated and forecasted precisely through the 4 stages of the algorithm according to input data without manual intervention. Experimental comparisons were made between the proposed algorithm and the 2 data driven forecasting algorithms, i.e. moving average method and Holt exponential smoothing method. It was demonstrated with the experimental results that automatic forecasting is feasible utilizing the proposed algorithm and higher accuracy can be acquired than these 2 data driven-based methods.
引用
收藏
页码:445 / 452
页数:8
相关论文
共 15 条
[1]   网络控制系统的模糊权重变采样周期调度策略 [J].
田中大 ;
李树江 ;
王艳红 ;
高宪文 ;
石彤 .
电子学报, 2015, 43 (05) :980-986
[2]  
An Analysis and Proof on Self-Similarity Property of Flash P2P Internet Video Traffic[J]. JI Yimu,YUAN Yongge,HAN Zhijie,WANG Hao,HAN Lei,SUN Yanfei,WANG Ruchuan.Chinese Journal of Electronics. 2015(01)
[3]   针对时间序列多步预测的聚类隐马尔科夫模型 [J].
章登义 ;
欧阳黜霏 ;
吴文李 .
电子学报, 2014, 42 (12) :2359-2364
[4]   ADF模式中漂移项和趋势项检验量分布与Bootstrap检验研究 [J].
江海峰 ;
陶长琪 ;
陈启明 .
统计与信息论坛, 2014, 29 (06) :3-10
[5]   时间序列预测模型研究综述 [J].
张美英 ;
何杰 .
数学的实践与认识, 2011, 41 (18) :189-195
[6]   ADF检验中滞后长度的选择——基于ARIMA(0,1,q)过程的模拟证据 [J].
邓露 ;
张晓峒 .
数量经济技术经济研究, 2008, (09) :126-138
[7]   时间序列数据挖掘综述 [J].
贾澎涛 ;
何华灿 ;
刘丽 ;
孙涛 .
计算机应用研究, 2007, (11) :15-18+29
[8]  
Automated Box–Jenkins forecasting tool with an application for passenger demand in urban rail systems[J] . Saeedeh Anvari,Selcuk Tuna,Metin Canci,Metin Turkay.J. Adv. Transp. . 2016 (1)
[9]  
A novel hybridization of artificial neural networks and ARIMA models for time series forecasting[J] . Mehdi Khashei,Mehdi Bijari.Applied Soft Computing Journal . 2010 (2)
[10]  
Automated Box–Jenkins forecasting modelling[J] . Y. Lu,S.M. AbouRizk.Automation in Construction . 2008 (5)