Prediction of Rotor Spun Yarn Strength Using Adaptive Neuro-fuzzy Inference System and Linear Multiple Regression Methods

被引:1
|
作者
狄欧
王新厚
机构
[1] China
[2] China Key Laboratory of Science & Technology of Eco-Textile
[3] College of Textiles Donghua University
[4] Ministry of Education
[5] Shanghai 200051
[6] Shanghai 201620
关键词
ANFIS; yarn strength; rotor spun yarn; properties of fiber;
D O I
10.19884/j.1672-5220.2008.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties.The adaptive neuro-fuzzy system inference(ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength.Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product(CSP) was the target.The predictive performances of the two models are estimated and compared.We found that the ANFIS has a better predictive power in comparison with linear multiple regression model.The impact of each fiber property is also illustrated.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [21] Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    Zounemat-Kermani, Mohammad
    Teshnehlab, Mohammad
    APPLIED SOFT COMPUTING, 2008, 8 (02) : 928 - 936
  • [22] Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System
    Zeinalnezhad, Masoomeh
    Chofreh, Abdoulmohammad Gholamzadeh
    Goni, Feybi Ariani
    Klemes, Jiri Jaromir
    JOURNAL OF CLEANER PRODUCTION, 2020, 261
  • [23] Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System
    Zeinalnezhad, Masoomeh
    Chofreh, Abdoulmohammad Gholamzadeh
    Goni, Feybi Ariani
    Klemeš, Jiří Jaromír
    Journal of Cleaner Production, 2020, 261
  • [24] Comparison of adaptive neuro-fuzzy inference system and multiple nonlinear regression for the productivity prediction of inclined passive solar still
    Mashaly, Ahmed F.
    Alazba, A. A.
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2019, 68 (02): : 98 - 110
  • [25] Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering
    Shi, Tianze
    Chen, Shuming
    Wang, Dengfeng
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS, 2015, 8 (03): : 916 - 927
  • [26] Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
    S. Kumanan
    C. P. Jesuthanam
    R. Ashok Kumar
    The International Journal of Advanced Manufacturing Technology, 2008, 35 : 778 - 788
  • [27] Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
    Kumanan, S.
    Jesuthanam, C. P.
    Kumar, R. Ashok
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 35 (7-8): : 778 - 788
  • [28] Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength
    Mehdi Hashemi Jokar
    Sohrab Mirasi
    Soft Computing, 2018, 22 : 4493 - 4510
  • [29] A two-stage strategy for generator rotor angle stability prediction using the adaptive neuro-fuzzy inference system
    Amini, Shiva
    Ghasemi, Sasan
    Azadimoshfegh, Iman
    Moshtagh, Jamal
    Siano, Pierluigi
    ELECTRICAL ENGINEERING, 2023, 105 (5) : 2871 - 2887
  • [30] Application of an Adaptive Neuro-fuzzy System for Predicting Rotor Spinning Yarn Quality Properties
    Nebikora, Ildephonse
    Wang Jun
    PROCEEDINGS OF THE FIBER SOCIETY 2009 SPRING CONFERENCE, VOLS I AND II, 2009, : 88 - 91