On fundamental solution for powers of the sub-Laplacian on the Heisenberg group

被引:0
作者
WANG Haimeng [1 ]
WU Qingyan [2 ]
机构
[1] School of Mathematics and Information Technology, Jiangsu Second Normal University
[2] School of Science, Linyi University
关键词
sub-Laplacian; fundamental solution; group Fourier transform; Plancherel formula; Heisenberg group;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides,the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 13 条
[1]   一般二步幂零群上Laplacian算子的基本解 [J].
王海蒙 ;
谢非非 .
高校应用数学学报A辑, 2013, 28 (03) :347-358
[2]   Laguerre calculus and Paneitz operator on the Heisenberg group [J].
Chang Der-Chen ;
Chang Shu-Cheng ;
Tie JingZhi .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (12) :2549-2569
[3]  
A Note on Hermite and Subelliptic Operators[J]. Der Chen CHANG Department of Mathematics.Georgetown University,Washington,DC 20057-1233.USA Jing Zhi TIE Department of Mathematics.University of Georgia,Athens,GA 30602-7403.USA.Acta Mathematica Sinica(English Series). 2005(04)
[4]  
On Octonionic Regular Functions and the Szeg? Projection on the Octonionic Heisenberg Group[J] . Haimeng Wang,Wei Wang.Complex Analysis and Operator Theory . 2014 (6)
[5]  
The tangential Cauchy–Fueter complex on the quaternionic Heisenberg group[J] . Wei Wang.Journal of Geometry and Physics . 2010 (1)
[6]  
The k -Cauchy–Fueter complex, Penrose transformation and Hartogs phenomenon for quaternionic k -regular functions[J] . Wei Wang.Journal of Geometry and Physics . 2009 (3)
[7]   Analysis of the Kohn Laplacian on quadratic CR manifolds [J].
Peloso, MM ;
Ricci, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :321-355
[8]   Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group [J].
Der-Chen Chang ;
Jingzhi Tie .
The Journal of Geometric Analysis, 2000, 10 (4)
[9]   The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes [J].
Beals, R ;
Gaveau, B ;
Greiner, P .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :288-345
[10]  
The solution of the $$\overline \partial $$ -Neumann problem in a strictly pseudoconvex Siegel domain[J] . Nancy K. Stanton.Inventiones Mathematicae . 1981 (1)