激光选区熔化成形316L循环使用粉末特性演变机理研究

被引:6
作者
路超 [1 ]
肖梦智 [1 ]
屈岳波 [1 ]
尹燕 [2 ,3 ]
张瑞华 [1 ,2 ]
机构
[1] 钢铁研究总院
[2] 阳江市五金刀剪产业技术研究院
[3] 兰州理工大学
关键词
激光技术; 激光选区熔化; 循环使用; 氧化斑点; 粉末特性; 演变机理;
D O I
暂无
中图分类号
TG665 [光能加工设备及其加工];
学科分类号
080201 ;
摘要
在激光选区熔化技术中,激光-粉末的相互作用会对粉末特性产生重大影响,而在粉末循环使用过程中粉末特性的变化规律和演变机理尚不明确。本文利用激光粒度仪、扫描电子显微镜、能量色散型光谱仪研究了激光选区熔化粉末的粒径、物理特性、表面形貌、元素含量、微观组织在循环使用过程中的变化规律。研究结果表明:随着316L不锈钢粉末循环使用次数的增加,粉末的粒径分布、形貌、表面成分、表面微观组织和氧化程度都发生了较大变化;粉末的堆积特性如松装密度、振实密度、流动性也发生了不同程度的变化;另外,循环使用的粉末颗粒表面生成了富含硅、锰元素的圆形氧化斑点。本文将循环粉末中的异形颗粒分为两类——激光诱导熔池溅射颗粒和气体夹带诱导异形颗粒,并详细讨论了两类异形颗粒的形成机理。本文研究结果表明316L奥氏体不锈钢在循环使用过程中会产生弱磁性粉末颗粒。
引用
收藏
页码:92 / 104
页数:13
相关论文
共 35 条
[1]  
Spattering and denudation in laser powder bed fusion process: Multiphase flow modelling.[J].Hui Chen;Wentao Yan.Acta Materialia.2020, prepublish
[2]  
Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing.[J].Alessandro Averardi;Corrado Cola;Steven Eric Zeltmann;Nikhil Gupta.Materials Today Communications.2020,
[3]  
In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing.[J].Qilin Guo;Cang Zhao;Minglei Qu;Lianghua Xiong;S. Mohammad H. Hojjatzadeh;Luis I. Escano;Niranjan D. Parab;Kamel Fezzaa;Tao Sun;Lianyi Chen.Additive Manufacturing.2020,
[4]  
Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process.[J].Zachary A. Young;Qilin Guo;Niranjan D. Parab;Cang Zhao;Minglei Qu;Luis I. Escano;Kamel Fezzaa;Wes Everhart;Tao Sun;Lianyi Chen.Additive Manufacturing.2020, prepublish
[5]   Powders for powder bed fusion: a review [J].
Vock, Silvia ;
Kloeden, Burghardt ;
Kirchner, Alexander ;
Weissgaerber, Thomas ;
Kieback, Bernd .
PROGRESS IN ADDITIVE MANUFACTURING, 2019, 4 (04) :383-397
[6]  
Recyclability of stainless steel (316 L) powder within the additive manufacturing process.[J].Gorji Nima E.;O'Connor Rob;Mussatto Andre;Snelgrove Matthew;González P.G. Mani;Brabazon Dermot.Materialia.2019, C
[7]  
High-power laser-matter interaction during laser powder bed fusion.[J].Jie Yin;LiangLiang Yang;Xu Yang;Haihong Zhu;Dengzhi Wang;Linda Ke;Zemin Wang;Guoqing Wang;Xiaoyan Zeng.Additive Manufacturing.2019,
[8]  
Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling.[J].Hui Chen;Qingsong Wei;Yingjie Zhang;Fan Chen;Yusheng Shi;Wentao Yan.Acta Materialia.2019,
[9]  
Evolution of 316L stainless steel feedstock due to laser powder bed fusion process.[J].Michael J. Heiden;Lisa A. Deibler;Jeff M. Rodelas;Josh R. Koepke;Dan J. Tung;David J. Saiz;Bradley H. Jared.Additive Manufacturing.2019,
[10]   The Role of Microstructure and Surface Finish on the Corrosion of Selective Laser Melted 304L [J].
Schaller, Rebecca F. ;
Mishra, Ajit ;
Rodelas, Jeffrey M. ;
Taylor, Jason M. ;
Schindelholz, Eric J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :C234-C242