Convergence rates for reversible Markov chains without the assumption of nonnegative definite matrices

被引:0
作者
MAO YongHua School of Mathematical SciencesBeijing Normal UniversityLaboratory of Mathematics and Complex SystemsMinistry of EducationBeijing China [100875 ]
机构
关键词
Markov chain; spectral theory; convergence rate; geometric ergodicity; strong ergodicity; Lyapunov’s condition;
D O I
暂无
中图分类号
O211.62 [马尔可夫过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Explicit convergence rates in geometric and strong ergodicity for denumerable discrete time Markov chains with general reversible transition matrices are obtained in terms of the geometric moments or uniform moments of the hitting times to a fixed point.Another way by Lyapunov's drift conditions is also used to derive these convergence rates.As a typical example,the discrete time birth-death process(random walk) is studied and the explicit criteria for geometric ergodicity are presented.
引用
收藏
页码:1979 / 1988
页数:10
相关论文
共 4 条
[1]   马氏链遍历性的几个结果 [J].
毛永华 ;
张唯一 .
北京师范大学学报(自然科学版), 2004, (04) :437-440
[2]   Explicit bounds of the first eigenvalue [J].
陈木法 .
Science China Mathematics, 2000, (10) :1051-1059
[3]  
Exponential convergence to equilibrium for a class of random-walk models[J] . Alan D. Sokal,Lawrence E. Thomas.Journal of Statistical Physics . 1989 (3)
[4]  
Lecture Notes in Physics .2 Sanchez-Paleneia E. Springer-Verlag . 1980