The Quasi-Periodic Solutions for the Variable-Coefficient KdV Equation

被引:0
作者
欧阳凤娇
邓淑芳
机构
[1] DepartmentofMathematics,EastChinaUniversityofScienceandTechnology
关键词
variable-coefficient KdV equation; Hirota method; quasi-periodic solution;
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
Hirota method is used to directly construct quasi-periodic wave solutions for the nonisospectral soliton equation.One and two quasi-periodic wave solutions for the variable-coefficient KdV equation are studied.The well known one-soliton solution can be reduced from the one quasi-periodic wave solution.
引用
收藏
页码:475 / 479
页数:5
相关论文
共 8 条
[1]  
A.Nakamura. Journal of the Physical Society of Japan . 1980
[2]  
Hirota R.The direct method in soliton theory. . 2004
[3]  
Y. Zhang,L.Y. Ye,Y.N. Lu¨,H.Q. Zhao. J. Phys. A: Math. Theor . 2007
[4]  
S.F.Deng. Commun.Theor.Phys(Beijing,China) . 2005
[5]  
A. Nakamura. Journal of the Physical Society of Japan . 1979
[6]  
E.G. Fan,Y.C. Hon. Reports on Mathematical Physics . 2010
[7]  
E.G. Fan. Physics Letters A . 2010
[8]  
Z.L. Yan,J.P. Zhou. Communications in Theoretical Physics . 2010