Blow-up of critical norms for the 3-D Navier-Stokes equations

被引:0
|
作者
WANG WenDong [1 ]
ZHANG ZhiFei [2 ]
机构
[1] School of Mathematical Sciences, Dalian University of Technology
[2] School of Mathematical Sciences, Peking University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Navier-Stokes equations; interior regularity criterion; BMO space; Besov space;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Let u =(uh, u3) be a smooth solution of the 3-D Navier-Stokes equations in R3× [0, T). It was proved that if u3 ∈ L∞(0, T;˙B-1+3/p p,q(R3)) for 3 < p, q < ∞ and uh∈ L∞(0, T; BMO-1(R3)) with uh(T) ∈ VMO-1(R3), then u can be extended beyond T. This result generalizes the recent result proved by Gallagher et al.(2016), which requires u ∈ L∞(0, T;˙B-1+3/pp,q(R3)). Our proof is based on a new interior regularity criterion in terms of one velocity component, which is independent of interest.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 50 条