典型高原湿地底泥微生物对砷污染的响应

被引:5
作者
保欣晨 [1 ,2 ]
覃一书 [1 ,2 ]
侯磊 [1 ]
汪洁 [1 ,2 ]
韩永和 [3 ]
向萍 [1 ,2 ]
机构
[1] 西南林业大学环境污染与食品安全及人体健康云南省创新团队
[2] 西南林业大学生态与环境学院/环境修复与健康研究院
[3] 福建师范大学环境科学与工程学院
关键词
砷污染; 典型高原湿地; 微生物群落; 结构与多样性; 高通量测序;
D O I
10.13671/j.hjkxxb.2021.0286
中图分类号
X52 [水体污染及其防治];
学科分类号
0815 ;
摘要
为了深入探讨典型高原湿地底泥微生物群落对砷胁迫的响应规律,通过砷添加(As浓度分别为0、100、150、300 mg·kg-1,依次记为YZ1、YZ2、YZ3、YZ4)的淹水模拟湿地生境试验,利用高通量测序技术对样品中细菌16S rRNA的V3~V4区进行测序.结果显示,底泥中砷形态主要以专性吸附态砷(F2)和弱结晶度的铁铝水合氧化物结合态砷(F3)为主,且随着砷污染浓度的升高,活性态砷(F1、F2和F3)占比上升.砷污染会影响底泥微生物多样性和群落结构.与YZ1组相比,YZ2组在一定程度上刺激了砷敏感微生物的生长和繁殖,如拟杆菌门(Bacteroidetes);YZ4组处理下明显抑制了该微生物生长,但会促进耐砷微生物生长,如厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)使其成为群落主导.同时,在属水平上,YZ4处理组中具有As(V)异化还原功能的地杆菌属(Geobacter)细菌的占比也较YZ1组有所上升.基于功能预测结果表明,与YZ1处理组相比,其它3个处理组中均降低了底泥细菌的功能.研究显示,砷胁迫下,影响了底泥细菌的群落组成.高砷(300 mg·kg-1)促进了厚壁菌门、变形菌门、地杆菌属和假单胞菌属等具有砷形态转化功能微生物的生长繁殖.研究结果可为准确评价面临砷污染的高原湿地环境风险及正确认识底泥中关键功能微生物作用提供科学数据.
引用
收藏
页码:454 / 463
页数:10
相关论文
共 40 条
[1]  
Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil.[J].Ting Luo;Zhongli Huang;Xinyu Li;Yingying Zhang.Science of the Total Environment.2020,
[2]   Removal of Fluoride and Arsenic by a Hybrid Constructed Wetland System [J].
Lu, Han ;
Li, Juean ;
Liu, Xinchun ;
Yu, Zhisheng ;
Liu, Ruyin .
CHEMISTRY & BIODIVERSITY, 2019, 16 (07)
[3]  
Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.[J].Jagat Rathod;Jiin-Shuh Jean;Wei-Teh Jiang;I-Hsiu Huang;Bernard Haochih Liu;Yao-Chang Lee.Science of the Total Environment.2019,
[4]  
Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure..[J].Cody S Sheik;Tyler W Mitchell;Fariha Z Rizvi;Yasir Rehman;Muhammad Faisal;Shahida Hasnain;Michael J McInerney;Lee R Krumholz.PLoS ONE.2017, 6
[5]  
Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation.[J].Yan eXie;Jibiao eFan;Weixi eZhu;Erick eAmombo;Yanhong eLou;Liang eChen;Jinmin eFu.Frontiers in Plant Science.2016,
[6]  
Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.[J].Ke-Qing Xiao;Li-Guan Li;Li-Ping Ma;Si-Yu Zhang;Peng Bao;Tong Zhang;Yong-Guan Zhu.Environmental Pollution.2016,
[7]  
Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils.[J].M. Moche;J. Gutknecht;E. Schulz;U. Langer;J. Rinklebe.Soil Biology and Biochemistry.2015,
[8]  
Metal solubility and speciation under the influence of waterlogged condition and the presence of wetland plants.[J].W.C. Li;H. Deng;M.H. Wong.Geoderma.2016,
[9]  
Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil.[J].Juan Zhang;Li-Hong Wang;Jun-Cheng Yang;Hui Liu;Jiu-Lan Dai.Science of the Total Environment.2015,
[10]  
Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO 3 extraction.[J].Shi-Wei Li;Jie Li;Hong-Bo Li;Ravi Naidu;L.Q. Ma.Journal of Hazardous Materials.2015,