A data structure and function classification based method to evaluate clustering models for gene expression data

被引:0
|
作者
易东
杨梦苏
黄明辉
李辉智
王文昌
机构
[1] Applied Research Centre for Genomics Technology
[2] Department of Electronic Technology
[3] 83 Tat Chee Avenue
[4] Kowloon
[5] Department of Biology & Chemistry
[6] Department of Medical Statistics
[7] Chongqing 400031
[8] Southwest University of Politics and Law Science
[9] China
[10] Third Military Medical University
[11] City University of Hong Kong
[12] Chongqing 400038
关键词
gene expression; evaluation of clustering; adjust-; FOM; entropy;
D O I
暂无
中图分类号
R311 [医用数学];
学科分类号
1001 ;
摘要
Objective: To establish a systematic framework for selecting the best clustering algorithm and provide an evaluation method for clustering analyses of gene expression data. Methods: Based on data structure (internal information) and function classification (external information), the evaluation of gene expression data analyses were carried out by using 2 approaches. Firstly, to assess the predictive power of clustering algorithms, Entropy was introduced to measure the consistency between the clustering results from different algorithms and the known and validated functional classifications. Secondly, a modified method of figure of merit (adjust-FOM) was used as internal assessment method. In this method, one clustering algorithm was used to analyze all data but one experimental condition, the remaining condition was used to assess the predictive power of the resulting clusters. This method was applied on 3 gene expression data sets (2 from the Lyer’s Serum Data Sets, and 1 from the Ferea’s Saccharomyces
引用
收藏
页码:312 / 317
页数:6
相关论文
共 50 条
  • [1] VALIDATION OF CLASSIFICATION MODELS AND DATA REDUCTION METHODS BASED ON GENE EXPRESSION DATA
    Rafiee, Mohammad
    Rafiei, Fatemeh
    Tabatabaei, Seyyed Mohammad
    AlaviMajd, Hamid
    Rafiei, Ali
    Khodakarim, Soheila
    JP JOURNAL OF BIOSTATISTICS, 2019, 16 (02) : 79 - 90
  • [2] A novel clustering approach based on the manifold structure of gene expression data
    Shi, Jinlong
    Luo, Zhigang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [3] DYNAMIC CORE BASED CLUSTERING OF GENE EXPRESSION DATA
    Bocicor, Maria-Iuliana
    Sirbu, Adela
    Czibula, Gabriela
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (03): : 1051 - 1069
  • [4] Impact of missing data imputation methods on gene expression clustering and classification
    de Souto, Marcilio C. P.
    Jaskowiak, Pablo A.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2015, 16
  • [5] Impact of missing data imputation methods on gene expression clustering and classification
    Marcilio CP de Souto
    Pablo A Jaskowiak
    Ivan G Costa
    BMC Bioinformatics, 16
  • [6] Clustering analysis of microarray gene expression data with new clustering ensemble method
    Luo, Fei
    Liu, Juan
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 500 - 504
  • [7] Techniques for clustering gene expression data
    Kerr, G.
    Ruskin, H. J.
    Crane, M.
    Doolan, P.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (03) : 283 - 293
  • [8] An Incremental Clustering of Gene Expression data
    Das, Rosy
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 741 - +
  • [9] Clustering analysis for gene expression data
    Chen, YD
    Ermolaeva, O
    Bittner, M
    Meltzer, P
    Trent, J
    Dougherty, ER
    Batman, S
    ADVANCES IN FLUORESCENCE SENSING TECHNOLOGY IV, PROCEEDINGS OF, 1999, 3602 : 422 - 428
  • [10] PSO Based Feature Selection for Clustering Gene Expression Data
    Deepthi, P. S.
    Thampi, Sabu M.
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,