A DISCRETE CHARACTERIZATION OF HERZ-TYPE TRIEBEL-LIZORKIN SPACES AND ITS APPLICATIONS

被引:0
作者
徐景实
机构
[1] Department of Mathematics
[2] Hunan University
[3] Changsha 410082
[4] China Department of Mathematics
[5] Changsha University of Science and Technology
[6] Changsha 410077
关键词
Herz-type space; Triebel-Lizorkin space; discrete characterization; pseudo-differential operator; maximal operator;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
引用
收藏
页码:412 / 420
页数:9
相关论文
共 50 条
[41]   An atomic decomposition of variable Besov and Triebel-Lizorkin spaces [J].
Xu, Jingshi .
ARMENIAN JOURNAL OF MATHEMATICS, 2009, 2 (01) :1-12
[42]   Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderon-Zygmund operators [J].
Wang, Fan ;
Han, Yongsheng ;
He, Ziyi ;
Yang, Dachun .
DISSERTATIONES MATHEMATICAE, 2021, 565 :1-113
[43]   DUALITY OF WEIGHTED MULTIPARAMETER TRIEBEL-LIZORKIN SPACES [J].
丁卫 ;
朱月萍 .
Acta Mathematica Scientia, 2017, (04) :1083-1104
[44]   Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type [J].
Yang, DC .
POTENTIAL ANALYSIS, 2003, 19 (02) :193-210
[45]   Decomposition of Besov and Triebel-Lizorkin spaces on the sphere [J].
Narcowich, F. ;
Petrushev, P. ;
Ward, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :530-564
[46]   Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations [J].
YANG Dachun Department of Mathematics .
Science China Mathematics, 2005, (01) :12-39
[47]   Reduction of integration domain in Triebel-Lizorkin spaces [J].
Rutkowski, Artur .
STUDIA MATHEMATICA, 2021, 259 (02) :121-152
[48]   DUALITY OF WEIGHTED MULTIPARAMETER TRIEBEL-LIZORKIN SPACES [J].
Ding, Wei ;
Zhu, Yueping .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) :1083-1104
[49]   Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications [J].
Li, Zi Wei ;
Yang, Da Chun ;
Yuan, Wen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) :623-661
[50]   Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations [J].
Dachun Yang .
Science in China Series A: Mathematics, 2005, 48 :12-39