Symmetric Periodic Orbits and Uniruled Real Liouville Domains

被引:0
作者
Urs FRAUENFELDER [1 ]
Otto van KOERT [2 ]
机构
[1] Department of Mathematics,University of Augsburg
[2] Department of Mathematics and Research Institute of Mathematics,Seoul National University
关键词
Symmetric periodic orbits; Real symplectic manifolds; Real uniruledness;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
A real Liouville domain is a Liouville domain with an exact anti-symplectic involution. The authors call a real Liouville domain uniruled if there exists an invariant finite energy plane through every real point. Asymptotically, an invariant finite energy plane converges to a symmetric periodic orbit. In this note, they work out a criterion which guarantees uniruledness for real Liouville domains.
引用
收藏
页码:607 / 624
页数:18
相关论文
共 6 条
[1]   SYMPLECTIC INVARIANCE OF UNIRULED AFFINE VARIETIES AND LOG KODAIRA DIMENSION [J].
Mclean, Mark .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) :1929-1964
[2]   Birational cobordism invariance of uniruled symplectic manifolds [J].
Hu, Jianxun ;
Li, Tian-Jun ;
Ruan, Yongbin .
INVENTIONES MATHEMATICAE, 2008, 172 (02) :231-275
[3]   Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry [J].
Welschinger, JY .
INVENTIONES MATHEMATICAE, 2005, 162 (01) :195-234
[4]  
Correction to “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”[J] . H. Hofer,K. Wysocki,E. Zehnder. Annales de l’Institut Henri Poincare / Analyse non lineaire . 1998 (4)
[5]  
Periodische Bewegungen mechanischer Systeme[J] . H. Seifert. Mathematische Zeitschrift . 1948 (2)
[6]  
The restricted problem of three bodies[J] . George D. Birkhoff. Rendiconti del Circolo Matematico di Palermo . 1915 (1)