On Recursion Operator of the q-KP Hierarchy

被引:3
|
作者
田可雷 [1 ]
朱晓鸣 [1 ]
贺劲松 [2 ]
机构
[1] School of Mathematics, Hefei University of Technology
[2] Department of Mathematics, Ningbo University
基金
中国国家自然科学基金;
关键词
q-KP hierarchy; flow equations; recursion operator;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
It is the aim of the present article to give a general expression of flow equations of the q-KP hierarchy.The distinct difference between the q-KP hierarchy and the KP hierarchy is due to q-binomial and the action of q-shift operator θ, which originates from the Leibnitz rule of the quantum calculus. We further show that the n-reduction leads to a recursive scheme for these flow equations. The recursion operator for the flow equations of the q-KP hierarchy under the n-reduction is also derived.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [1] On Recursion Operator of the q-KP Hierarchy
    Tian, Ke-Lei
    Zhu, Xiao-Ming
    He, Jing-Song
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (03) : 263 - 268
  • [2] The ghost symmetries of the q-KP hierarchy
    Tian, Kelei
    Du, Xiaohan
    Xu, Ying
    Yi, Ge
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (38)
  • [3] String equations of the q-KP hierarchy
    Kelei Tian
    Jingsong Hea
    Yucai Su
    Yi Cheng
    Chinese Annals of Mathematics, Series B, 2011, 32 : 895 - 904
  • [4] String equations of the q-KP hierarchy
    Tian, Kelei
    He, Jingsong
    Su, Yucai
    Cheng, Yi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (06) : 895 - 904
  • [5] String Equations of the q-KP Hierarchy
    Kelei TIAN 1 Jingsong HE 2 Yucai SU 3 Yi CHENG 11 Wu Wen-Tsun Key Laboratory of Mathematics
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (06) : 895 - 904
  • [6] SYMMETRIES OF THE MULTICOMPONENT q-KP HIERARCHY ON A GRASSMANNIAN
    Li, Chuanzhong
    Qian, Chao
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 213 (02) : 1495 - 1512
  • [7] An inversion formula for recursion operator of KP hierarchy
    Tu, Guizhang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (12)
  • [8] Virasoro and W-constraints for the q-KP hierarchy
    Tian, Kelei
    He, Jingsong
    Cheng, Yi
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2010, 1212 : 35 - +
  • [9] q-Painlevé Systems Arising from q-KP Hierarchy
    Kenji Kajiwara
    Masatoshi Noumi
    Yasuhiko Yamada
    Letters in Mathematical Physics, 2002, 62 : 259 - 268
  • [10] q-Painleve systems arising from q-KP hierarchy
    Kajiwara, K
    Noumi, M
    Yamada, Y
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 62 (03) : 259 - 268