BURIED COMPONENTS OF A JULIA SET

被引:0
作者
Sun Yeshun Yang Chungchun Dept of MathZhejiang UnivHangzhou China Deptof MathHong Kong Univof Science and TechnologyClear Water BayKowloonHong KongChina [310027 ]
机构
关键词
buried point; buried component; Julia set;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this note,it is shown that if a rational function f of degree≥2 has a nonempty set of buried points,then for a generic choice of the point z in the Julia set, z is a buried point,and if the Julia set is disconnected,it has uncountably many buried components.
引用
收藏
页码:431 / 434
页数:4
相关论文
共 50 条
[21]   CONTINUITY OF JULIA SET FOR A FAMILY OF ENTIRE FUNCTIONS [J].
Cunji Yang (Dali University ;
China) .
Analysis in Theory and Applications, 2009, 25 (04) :317-324
[22]   Fractal Dimension of Julia Set for Nonanalytic Maps [J].
Chao Tang .
Journal of Statistical Physics, 1998, 93 :1001-1008
[23]   The shape of the Julia set of an expanding rational map [J].
Extremiana Aldana, Jose Ignacio ;
Hernandez Paricio, Luis Javier ;
Rivas Rodriguez, Maria Teresa .
TOPOLOGY AND ITS APPLICATIONS, 2018, 239 :251-273
[24]   JULIA SET OF λexp(z)/z WITH REAL PARAMETERS λ [J].
Zhan, Guoping .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (02) :271-283
[25]   Julia set of λ exp(z)/z with real parameters λ [J].
Guoping Zhan .
Indian Journal of Pure and Applied Mathematics, 2017, 48 :271-283
[26]   The Julia set of Newton's method for multiple root [J].
Wang, XY ;
Liu, W .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) :101-110
[27]   On the connectivity of the Julia set of a finitely generated rational semigroup [J].
Sun, YS ;
Yang, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) :49-52
[28]   Fatou directions along the Julia set for endomorphisms of CPk [J].
Dujardin, Romain .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 98 (06) :591-615
[29]   On biaccessible points in the Julia set of a Cremer quadratic polynomial [J].
Schleicher, D ;
Zakeri, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) :933-937
[30]   Julia set concerning Yancy-Lee theorem [J].
Gao, Junyang ;
Qiao, Hanyong .
PHYSICS LETTERS A, 2006, 355 (03) :167-171