On Ideal Convergence of Double Sequences in Probabilistic Normed Spaces

被引:0
作者
Vijay KUMAR [1 ]
Bernardo LAFUERZA-GUILLN [2 ]
机构
[1] Department of Mathematics,Haryana College of Technology and Management,Kaithal-136027,Haryana,India
[2] Departamento de Estadística y Matem’atica Aplicada,Universidad de Almería,Almería 04120,Spain
关键词
Ideal convergence; double sequence; statistical convergence; continuous t-norm and probabilistic normed spaces;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The notion of ideal convergence is a generalization of statistical convergence which has been intensively investigated in last few years.For an admissible ideal ∮N× N,the aim of the present paper is to introduce the concepts of ∮-convergence and ∮*-convergence for double sequences on probabilistic normed spaces(PN spaces for short).We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide.We also define ∮-Cauchy and ∮*-Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces.We establish example which shows that our method of convergence for double sequences on PN spaces is more general.
引用
收藏
页码:1689 / 1700
页数:12
相关论文
共 25 条
[1]  
On the definition of a probabilistic normed space[J] . C. Alsina,B. Schweizer,A. Sklar. &nbspAequationes Mathematicae . 1993 (1)
[2]  
On statistically convergent sequences of real numbers. T ?alát. Mathematica Slovaca . 1980
[3]  
Statistical convergence of double sequences. M Mursaleen,H Osama,H Edely. Journal of Mathematical Analysis and Applications . 2003
[4]  
On statistical convergence. Fridy J A. Analysis . 1985
[5]  
Triangular Norms. Klement EP,Mesiar R,Pap E. . 2000
[6]   Statistical convergence of multiple sequences [J].
Móricz, F .
ARCHIV DER MATHEMATIK, 2003, 81 (01) :82-89
[7]   Math [P]. 
COLEMAN KENNETH ROSS .
美国专利 :US2013020766A1 ,2013-01-24
[8]  
Statistical metric spaces. Schweizer B,Sklar A. Pacific Journal of Mathematics . 1960
[9]   A primer on triangle functions I [J].
Saminger-Platz, Susanne ;
Sempi, Carlo .
AEQUATIONES MATHEMATICAE, 2008, 76 (03) :201-240
[10]   A primer on triangle functions II [J].
Saminger-Platz, Susanne ;
Sempi, Carlo .
AEQUATIONES MATHEMATICAE, 2010, 80 (03) :239-268