On Ideal Convergence of Double Sequences in Probabilistic Normed Spaces

被引:0
作者
Vijay KUMAR [1 ]
Bernardo LAFUERZA-GUILLN [2 ]
机构
[1] Department of Mathematics,Haryana College of Technology and Management,Kaithal-136027,Haryana,India
[2] Departamento de Estadística y Matem’atica Aplicada,Universidad de Almería,Almería 04120,Spain
关键词
Ideal convergence; double sequence; statistical convergence; continuous t-norm and probabilistic normed spaces;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The notion of ideal convergence is a generalization of statistical convergence which has been intensively investigated in last few years.For an admissible ideal ∮N× N,the aim of the present paper is to introduce the concepts of ∮-convergence and ∮*-convergence for double sequences on probabilistic normed spaces(PN spaces for short).We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide.We also define ∮-Cauchy and ∮*-Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces.We establish example which shows that our method of convergence for double sequences on PN spaces is more general.
引用
收藏
页码:1689 / 1700
页数:12
相关论文
共 25 条
  • [1] On the definition of a probabilistic normed space[J] . C. Alsina,B. Schweizer,A. Sklar. &nbspAequationes Mathematicae . 1993 (1)
  • [2] On statistically convergent sequences of real numbers. T ?alát. Mathematica Slovaca . 1980
  • [3] Statistical convergence of double sequences. M Mursaleen,H Osama,H Edely. Journal of Mathematical Analysis and Applications . 2003
  • [4] On statistical convergence. Fridy J A. Analysis . 1985
  • [5] Triangular Norms. Klement EP,Mesiar R,Pap E. . 2000
  • [6] Statistical convergence of multiple sequences
    Móricz, F
    [J]. ARCHIV DER MATHEMATIK, 2003, 81 (01) : 82 - 89
  • [7] Math[P]. COLEMAN KENNETH ROSS.中国专利:US2013020766A1,2013-01-24
  • [8] Statistical metric spaces. Schweizer B,Sklar A. Pacific Journal of Mathematics . 1960
  • [9] A primer on triangle functions I
    Saminger-Platz, Susanne
    Sempi, Carlo
    [J]. AEQUATIONES MATHEMATICAE, 2008, 76 (03) : 201 - 240
  • [10] A primer on triangle functions II
    Saminger-Platz, Susanne
    Sempi, Carlo
    [J]. AEQUATIONES MATHEMATICAE, 2010, 80 (03) : 239 - 268