UNIFORM BOUNDEDNESS AND STABILITY OF SOLUTIONS TO A CUBIC PREDATOR-PREY SYSTEM WITH CROSS-DIFFUSION

被引:0
|
作者
Huaihuo Cao1
2. Dept. of Math.
机构
基金
中国国家自然科学基金;
关键词
self and cross-diffusion; uniform boundedness; global solutions; stability;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Using the energy estimate and Gagliardo-Nirenberg-type inequalities,the existence and uniform boundedness of the global solutions to a strongly coupled reaction-diffusion system are proved. This system is a generalization of the two-species Lotka-Volterra predator-prey model with self and cross-diffusion. Suffcient condition for the global asymptotic stability of the positive equilibrium point of the model is given by constructing Lyapunov function.
引用
收藏
页码:264 / 274
页数:11
相关论文
共 50 条