A Review of Metal Silicides for Lithium-Ion Battery Anode Application

被引:0
|
作者
Bo Ding [1 ]
Zhenfei Cai [1 ]
Zishan Ahsan [1 ]
Yangzhou Ma [1 ,2 ]
Shihong Zhang [1 ]
Guangsheng Song [1 ]
Changzhou Yuan [3 ]
Weidong Yang [4 ]
Cuie Wen [5 ]
机构
[1] Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering,Anhui University of Technology
[2] Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education,Xi'an Jiaotong University
[3] School of Materials Science and Engineering,University of Jinan
[4] Future Manufacturing Flagship,Commonwealth Science and Industries Research Organization (CSIRO)
[5] School of Engineering,RMIT University
基金
安徽省自然科学基金;
关键词
D O I
暂无
中图分类号
TB34 [功能材料]; TM912 [蓄电池];
学科分类号
080501 ;
摘要
Lithium batteries(LIBs) with low capacity graphite anode(~372 mAh g-1) cannot meet the ever-growing demand for new energy electric vehicles and renewable energy storage.It is essential to replace graphite anode with higher capacity anode materials for high-energy density LIBs.Silicon(Si) is well known to be a possible alternative for graphite anode due to its highest capacity(~4200 mAh g-1).Unfortunately,large volume change during lithiation and delithiation has prevented the Si anode from being commercialized.Metal silicides are a promising type of anode materials which can improve cycling stability via the accommodation of volume change by dispersing Si in the metal inactive/active matrix,while maintain greater capacity than graphite.Here,we present a classification of Si alloying with metals in periodic table of elements,review the available literature on metal silicide anodes to outline the progress in improving and understanding the electrochemical performance of various metal silicides,analyze the challenges that remain in using metal silicides,and offer perspectives regarding their future research and development as anode materials for commercial LIBs application.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 50 条
  • [1] A Review of Metal Silicides for Lithium-Ion Battery Anode Application
    Ding, Bo
    Cai, Zhenfei
    Ahsan, Zishan
    Ma, Yangzhou
    Zhang, Shihong
    Song, Guangsheng
    Yuan, Changzhou
    Yang, Weidong
    Wen, Cuie
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (03) : 291 - 308
  • [2] A Review of Metal Silicides for Lithium-Ion Battery Anode Application
    Bo Ding
    Zhenfei Cai
    Zishan Ahsan
    Yangzhou Ma
    Shihong Zhang
    Guangsheng Song
    Changzhou Yuan
    Weidong Yang
    Cuie Wen
    Acta Metallurgica Sinica (English Letters), 2021, 34 : 291 - 308
  • [3] Metal hydrides for lithium-ion battery application: A review
    Cheng, Qiaohuan
    Sun, Dalin
    Yu, Xuebin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 769 : 167 - 185
  • [4] Lithium hexaoxo antimonate as an anode for lithium-ion battery
    Kundu, Manab
    Mahanty, Sourindra
    Basu, Rajendra N.
    NANOMATERIALS AND ENERGY, 2012, 1 (01) : 51 - 56
  • [5] Excellent performance of a modified graphite anode for lithium-ion battery application
    Liao, Xingqun
    Ding, Zhiying
    Yin, Zhoulan
    IONICS, 2020, 26 (11) : 5367 - 5373
  • [6] Excellent performance of a modified graphite anode for lithium-ion battery application
    Xingqun Liao
    Zhiying Ding
    Zhoulan Yin
    Ionics, 2020, 26 : 5367 - 5373
  • [7] Review on Silicon-Based Anode Materials for Lithium-Ion Battery
    Wu Baozhen
    Wu Fuzhong
    Jin Huixin
    Lu Jiangteng
    Chen Jingbo
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (08) : 2600 - 2606
  • [8] Lithium-ion battery: a review
    Bidwe M.M.
    Kulkarni S.G.
    International Journal of Vehicle Information and Communication Systems, 2024, 9 (02) : 135 - 163
  • [9] Lithium-Ion Battery Anode From Fungus
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2016, 72 (07) : 12 - 13
  • [10] Review of metal oxides as anode materials for lithium-ion batteries
    Du, Jiakai
    Li, Qingmeng
    Chai, Jiali
    Jiang, Lei
    Zhang, Qianqian
    Han, Ning
    Zhang, Wei
    Tang, Bohejin
    DALTON TRANSACTIONS, 2022, 51 (25) : 9584 - 9590