Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces

被引:0
作者
LIN HaiBo [1 ]
YANG DaChun [2 ]
机构
[1] College of Science,China Agricultural University
[2] School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
upper doubling; geometrically doubling; Marcinkiewicz integral; atomic Hardy space; RBMO(μ);
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures.
引用
收藏
页码:123 / 144
页数:22
相关论文
共 21 条
  • [1] Hardy Spaces, Regularized BMO Spaces and the Boundedness of Caldern-Zygmund Operators on Non-homogeneous Spaces
    The Anh Bui
    Duong, Xuan Thinh
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 895 - 932
  • [2] Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces
    Hytonen, Tuomas
    Martikainen, Henri
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) : 1071 - 1107
  • [3] A remark to the L 2 boundedness of parametric Marcinkiewicz integral[J] . Journal of Mathematical Analysis and Applications . 2011 (2)
  • [4] Boundedness of Calderón–Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations[J] . Suile Liu,Dachun Yang,Dongyong Yang.Journal of Mathematical Analysis and Applications . 2011 (1)
  • [5] The Hardy space H <sup>1</sup> on non-homogeneous metric spaces[J] . Mathematical Proceedings of the Cambridge Philosophical Society . 2011 (1)
  • [6] Boundedness of Lusin-area and g λ ? functions on localized BMO spaces over doubling metric measure spaces[J] . Haibo Lin,Eiichi Nakai,Dachun Yang.Bulletin des sciences mathematiques . 2010 (1)
  • [7] Marcinkiewicz integral with rough kernels
    Lu, Shanzhen
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (01) : 1 - 14
  • [8] Boundedness of Marcinkiewicz integrals and their commutators in H 1 (? n × ? m )[J] . Dachun Yang,Yuan Zhou.Science in China Series A . 2006 (6)
  • [9] Calderón-Zygmund operators on Hardy spaces without the doubling condition[J] . Wengu Chen,Yan Meng,Dachun Yang.Proceedings of the American Mathematical Society . 2005 (9)
  • [10] Spaces of type BLO for non-doubling measures
    Jiang, YS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2101 - 2107