Review:Natural Polymer Electrolytes for Lithium Ion Batteries

被引:0
作者
Xuewei Fu [1 ]
Yu Wang [1 ]
Louis Scudiero [2 ]
Weihong Zhong [1 ]
机构
[1] Department of Mechanical and Materials Engineering,Washington State University
[2] Department of Chemistry,Washington State University
基金
美国国家科学基金会;
关键词
polymer electrolytes; natural polymer electrolytes; lithium ion batteries;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
Polymer electrolytes are attractive materials towards achieving safe,flexible and high-performance energy storage devices( ESDs) such as lithium ion batteries( LIBs). Conventional polymer electrolytes are confronted with big challenges to achieve high ionic conductivity,good mechanical properties,excellent biocompatibility and environmental friendliness. In this context,natural polymeric materials have appealing merits of multi-functionality,ease of accessibility,good mechanical strength,etc. making them promising candidates to substitute conventional polymer electrolytes. Recently,the rational design and fabrication of advanced natural bio-based polymer electrolytes have made important progresses. In this review, we summarize recent developments in terms of polymer electrolytes using natural polymers for several application purposes. This review also involves the merits and demerits of the different natural polymers that have been investigated thus far. The insights on state-of-the-art for natural polymer electrolytes and possible solutions for further improvement of them are discussed as well in this review.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Novel superacid-based lithium electrolytes for lithium ion and lithium polymer rechargeable batteries
    Venkatasetty, HV
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 671 - 673
  • [22] Printable Single-Ion Polymer Nanoparticle Electrolytes for Lithium Batteries
    Gallastegui, Antonela
    Del Olmo, Rafael
    Criado-Gonzalez, Miryam
    Leiza, Jose Ramon
    Forsyth, Maria
    Mecerreyes, David
    SMALL SCIENCE, 2024, 4 (03):
  • [23] Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques
    Volkov, Vitaly I.
    Yarmolenko, Olga V.
    Chernyak, Alexander V.
    Slesarenko, Nikita A.
    Avilova, Irina A.
    Baymuratova, Guzaliya R.
    Yudina, Alena V.
    MEMBRANES, 2022, 12 (04)
  • [24] Composite Polymer Electrolytes for Lithium Batteries
    Tamainato, S.
    Mori, D.
    Takeda, Y.
    Yamamoto, O.
    Imanishi, N.
    CHEMISTRYSELECT, 2022, 7 (29):
  • [25] Novel electrospun PAN–PVC composite fibrous membranes as polymer electrolytes for polymer lithium-ion batteries
    Zheng Zhong
    Qi Cao
    Bo Jing
    Sheng Li
    Xianyou Wang
    Ionics, 2012, 18 : 853 - 859
  • [26] Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries
    Polu, Anji Reddy
    Rhee, Hee-Woo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (10) : 7212 - 7219
  • [27] Polyethylene Glycol-Functionalized Siloxane Hybrid Gel Polymer Electrolytes for Lithium Ion Batteries
    Lee, Albert S.
    Lee, Jin Hong
    Lee, Jong-Chan
    Hong, Soon Man
    Hwang, Seung Sang
    Koo, Chong Min
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (05) : 3016 - 3020
  • [28] Recent studies on polymer electrolytes containing ionic liquids and their applications in lithium-ion batteries
    Marquina, Luigi Manfredy
    Riveros, Lyda La Torre
    Ccana, Victor Jauja
    Muedas-Taipe, Golfer
    Isaacs, Mauricio
    La Rosa-Toro, Adolfo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 948
  • [29] Zwitterionic poly(ionic liquids)-based polymer electrolytes for Lithium-ion batteries applications
    Liu, Jie
    Xu, Yao
    Xu, Fei
    Li, Jing
    Chen, Yanbo
    Qiao, Junjie
    Han, Yuyang
    Ren, Yurong
    Lin, Bencai
    IONICS, 2023, 29 (06) : 2249 - 2259
  • [30] Zwitterionic poly(ionic liquids)-based polymer electrolytes for Lithium-ion batteries applications
    Jie Liu
    Yao Xu
    Fei Xu
    Jing Li
    Yanbo Chen
    Junjie Qiao
    Yuyang Han
    Yurong Ren
    Bencai Lin
    Ionics, 2023, 29 : 2249 - 2259