Shape Optimization in Two-Dimensional Viscous Compressible Fluids

被引:0
|
作者
Zhong TAN School of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
Optimization shape; Orlicz spaces; Navier-Stokes equations;
D O I
暂无
中图分类号
O357 [粘性流体力学];
学科分类号
摘要
We present a method for solving the optimal shape problems for profiles surrounded byviscous compressible fluids in two space dimensions. The class of admissible profiles is quite generalincluding the minimal volume condition and a constraint on the thickness of the boundary. The fluidflow is modelled by the Navier-Stokes system for a general viscous barotropic fluid with the pressuresatisfying p(ρ) = aρlog~d(ρ) for large ρ. Here d > 1 and a > 0.
引用
收藏
页码:1793 / 1806
页数:14
相关论文
共 50 条
  • [31] The stability of one dimensional stationary flows of compressible viscous fluids
    Beirão da Veiga, H.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1990, 7 (04): : 259 - 268
  • [33] Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case
    Chen Feng
    Xu Ai-Guo
    Zhang Guang-Cai
    Gan Yan-Biao
    Cheng Tao
    Li Ying-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (04) : 681 - 693
  • [34] Optimization of Viscous Mixing in a Two-Dimensional Cavity Transfer Mixer
    A.A. Woering
    W.C.M. Gorissen
    A. Biesheuvel
    Flow, Turbulence and Combustion, 1998, 60 : 377 - 407
  • [35] Optimization of viscous mixing in a two-dimensional cavity transfer mixer
    Woering, AA
    Gorissen, WCM
    Biesheuvel, A
    FLOW TURBULENCE AND COMBUSTION, 1998, 60 (04) : 377 - 407
  • [36] Two-dimensional viscous flow in a granular material with a void of arbitrary shape
    Sekhar, GPR
    Sano, O
    PHYSICS OF FLUIDS, 2003, 15 (02) : 554 - 567
  • [37] TWO-DIMENSIONAL SHAPE OPTIMIZATION WITH NEARLY CONFORMAL TRANSFORMATIONS
    Iglesias, Jose A.
    Sturm, Kevin
    Wechsung, Florian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A3807 - A3830
  • [38] Time-reversal symmetry breaking in two-dimensional nonequilibrium viscous fluids
    Epstein, Jeffrey M.
    Mandadapu, Kranthi K.
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [40] Stability Analysis of Two-Dimensional Ideal Flows With Applications to Viscous Fluids and Plasmas
    Arsenio, Diogo
    Houamed, Haroune
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (08) : 7032 - 7059