Restricted Summability of Fourier Transforms and Local Hardy Spaces

被引:0
作者
Ferenc WEISZ [1 ]
机构
[1] Department of Numerical Analysis, Etvs L. University
关键词
Wiener amalgam spaces; local Hardy spaces; θ-summability of Fourier transforms; atomic decomposition;
D O I
暂无
中图分类号
O174.22 [傅里叶积分(傅里叶变换)];
学科分类号
070104 ;
摘要
A general summability method, the so-called θ-summability is considered for multi-di-mensional Fourier transforms. Under some conditions on θ, it is proved that the maximal operator ofthe θ-means defined in a cone is bounded from the amalgam Hardy space W(h,l) to W(L,l).This implies the almost everywhere convergence of the θ-means in a cone for all f ∈W(L,l)  L.
引用
收藏
页码:1627 / 1640
页数:14
相关论文
共 5 条
  • [1] Pointwise Convergence of Cone-like Restricted Two-dimensional Fejér Means of Walsh-Fourier Series
    Gyrgy GT
    Kroly NAGY
    [J]. ActaMathematicaSinica(EnglishSeries), 2010, 26 (12) : 2295 - 2304
  • [2] Pointwise convergence of cone-like restricted two-dimensional ( C , 1 ) means of trigonometric Fourier series[J] . Journal of Approximation Theory . 2007 (1)
  • [3] The Segal Algebra ${\bf S}0({\Bbb R}^d)$ and Norm Summability of Fourier Series and Fourier Transforms[J] . Hans G. Feichtinger,Ferenc Weisz.Monatshefte für Mathematik . 2006 (4)
  • [4] A local version of real Hardy spaces[J] . David Goldberg.Duke Mathematical Journal . 1979 (1)
  • [5] On the summability of double Fourier series[J] . J. Marcinkiewicz,Antoni Zygmund.Fundamenta Mathematicae . 1939