On Locally Quasiconformal Mappings

被引:0
作者
Ze Min ZHOU [1 ]
机构
[1] Department of Mathematics,Renmin University of China
基金
中国国家自然科学基金;
关键词
Homeomorphism; quasiconformal mapping; locally quasiconformal mapping; directional dilatation;
D O I
暂无
中图分类号
O174.55 [拟共形映射(拟保角变换)、拟解析函数、广义解析函数];
学科分类号
070104 ;
摘要
A homeomorphism w=f(z) of a domain D is called a locally quasiconformal mapping, if for each subdomain D’ of D with ’D, the restriction of f(z) on D’ is a quasiconformal mapping. We give some conditions for a measurable function μ(z) on the unit disc to be the complex dilatation of a locally quasiconformal mapping f which can be homeomorphically extended to the closed unit disc.
引用
收藏
页码:1543 / 1554
页数:12
相关论文
共 5 条
[1]   μ(z)-homeomorphisms in the plane [J].
Chen, ZG .
MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (03) :547-556
[2]   Estimates on μ(z)-homeomorphisms of the unit disk [J].
Chen Zhiguo .
Israel Journal of Mathematics, 2001, 122 (1) :347-358
[3]   On solutions of the Beltrami equation [J].
Brakalova, MA ;
Jenkins, JA .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 76 (1) :67-92
[4]   Boundary correspondence under mu(z)-homeomorphisms [J].
Chen, JX ;
Chen, ZG ;
He, CQ .
MICHIGAN MATHEMATICAL JOURNAL, 1996, 43 (02) :211-220
[5]  
On the behavior of quasiconformal mappings at a point[J] . Edgar Reich,Hubert R. Walczak.tran . 1965