PARTIAL REGULARITY FOR STATIONARY NAVIER-STOKES SYSTEMS BY THE METHOD OF A-HARMONIC APPROXIMATION

被引:0
作者
戴祎琛 [1 ]
谭忠 [2 ]
机构
[1] School of Mathematical Sciences, Xiamen University
[2] School of Mathematical Science and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University
关键词
Stationary Navier-Stokes systems; controllable growth condition; partial regularity; A-harmonic approximation;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
070104 ;
摘要
In this article, we prove a regularity result for weak solutions away from singular set of stationary Navier-Stokes systems with subquadratic growth under controllable growth condition. The proof is based on the A-harmonic approximation technique. In this article,we extend the result of Shuhong Chen and Zhong Tan [7] and Giaquinta and Modica [18] to the stationary Navier-Stokes system with subquadratic growth.
引用
收藏
页码:835 / 854
页数:20
相关论文
共 13 条
[1]  
Partial regularity for subquadratic parabolic systems under controllable growth conditions[J] . Yichen Dai,Zhong Tan,Shuhong Chen.Journal of Mathematical Analysis and Applications . 2015
[2]  
Optimal partial regularity for nonlinear sub-elliptic systems[J] . Shuhong Chen,Zhong Tan.Journal of Mathematical Analysis and Applications . 2011 (1)
[3]  
Non linear systems of the type of the stationary Navier-Stokes system[J] . G. Modica,M. Giaquinta.Journal für die reine und angewandte Mathematik (Crelles Journal) . 2009 (330)
[4]  
Harmonic type approximation lemmas[J] . Frank Duzaar,Giuseppe Mingione.Journal of Mathematical Analysis and Applications . 2008 (1)
[5]  
Partial regularity for weak solutions of stationary navier-stokes systems[J] . Chen Shuhong,Tan Zhong.Acta Mathematica Scientia . 2008 (4)
[6]  
The existence of regular boundary points for non-linear elliptic systems[J] . Frank Duzaar,Jan Kristensen,Giuseppe Mingione.Journal für die reine und angewandte Mathematik (Crelles Journal) . 2007 (602)
[7]   The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition [J].
Chen, Shuhong ;
Tan, Zhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :20-42
[8]   Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth [J].
Duzaar, Frank ;
Grotowski, Joseph F. ;
Kronz, Manfred .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (04) :421-448
[9]  
Optimal interior partial regularity?for nonlinear elliptic systems: the method of A-harmonic approximation[J] . Frank Duzaar,Joseph F. Grotowski.manuscripta mathematica . 2000 (3)
[10]   Partial Regularity of Minimizers of Quasiconvex Integrals with Subquadratic Growth [J].
Carozza, Menita ;
Fusco, Nicola ;
Mingione, Giuseppe .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1998, 175 (01) :141-164