Topological r-entropy and Measure Theoretic r-entropy of Flows

被引:0
作者
Yong JI [1 ]
Yun Ping WANG [2 ,3 ]
机构
[1] Department of Mathematics, Ningbo University
[2] School of Science, Ningbo University of Technology
[3] School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University
关键词
D O I
暂无
中图分类号
O174.12 [测度论]; O177.99 [其他];
学科分类号
070104 ;
摘要
The topological r-entropy and measure theoretic r-entropy of a flow are studied. For a flow(X, φ), it is shown that topological(measure theoretic) r-entropy is equal to the topological(measure theoretic) entropy of the time one map φ1 as r decreases to zero. The Brin–Katok’s entropy formula for r-entropy is also established.
引用
收藏
页码:761 / 769
页数:9
相关论文
共 50 条
  • [31] A generalized complexity measure based on Rényi entropy
    Pablo Sánchez-Moreno
    Juan Carlos Angulo
    Jesus S. Dehesa
    The European Physical Journal D, 2014, 68
  • [32] Entropy measure in the R&D risky project
    Wang, LW
    Wang, D
    ICIM' 2004: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANAGEMENT, 2004, : 559 - 562
  • [33] ZERO ENTROPY FACTORS OF TOPOLOGICAL FLOWS
    BLANCHARD, F
    LACROIX, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (03) : 985 - 992
  • [34] REGULARITY OF MEASURE THEORETIC ENTROPY FOR GEODESIC-FLOWS OF NEGATIVE CURVATURE .1.
    KNIEPER, G
    WEISS, H
    INVENTIONES MATHEMATICAE, 1989, 95 (03) : 579 - 589
  • [35] Measure Theoretic Entropy of Random Substitution Subshifts
    P. Gohlke
    A. Mitchell
    D. Rust
    T. Samuel
    Annales Henri Poincaré, 2023, 24 : 277 - 323
  • [36] Measure Theoretic Entropy of Random Substitution Subshifts
    Gohlke, P.
    Mitchell, A.
    Rust, D.
    Samuel, T.
    ANNALES HENRI POINCARE, 2023, 24 (01): : 277 - 323
  • [37] Entropy and r equivalence
    Heicklen, D
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 1139 - 1157
  • [38] On the entropy of LEGO((R))
    Durhuus, Bergfinnur
    Eilers, Soren
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2014, 45 (1-2) : 433 - 448
  • [39] Positive topological entropy of Reeb flows on spherizations
    Macarini, Leonardo
    Schlenk, Felix
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 : 103 - 128
  • [40] ERGODICITY AND TOPOLOGICAL ENTROPY OF GEODESIC FLOWS ON SURFACES
    Schroeder, Jan Philipp
    JOURNAL OF MODERN DYNAMICS, 2015, 9 : 147 - 167