A singular Monge-Ampère equation on unbounded domains

被引:1
作者
Huaiyu Jian
You Li
机构
[1] DepartmentofMathematicalSciences,TsinghuaUniversity
关键词
Dirichlet problem; singular Monge-Amp`ere equation; unbounded domain;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we study the Dirichlet problem for a singular Monge-Amp`ere type equation on unbounded domains. For a few special kinds of unbounded convex domains, we find the explicit formulas of the solutions to the problem. For general unbounded convex domain ?, we prove the existence for solutions to the problem in the space C∞(?) ∩ C(?). We also obtain the local C1/2-estimate up to the ?? and the estimate for the lower bound of the solutions.
引用
收藏
页码:1473 / 1480
页数:8
相关论文
共 50 条
[41]   SINGULAR MONGE-AMPERE EQUATIONS OVER CONVEX DOMAINS [J].
Li, Mengni .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
[42]   Eigenfunctions for singular fully nonlinear equations in unbounded domains [J].
Birindelli, I. ;
Demengel, F. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (06) :697-714
[43]   The Existence of Positive Solution for Singular Boundary Value Problems of First Order Differential Equation on Unbounded Domains [J].
Xingqiu Zhang Jingxian Sun Department of MathematicsLiaocheng UniversityLiaochengShandong China Department of MathematicsXuzhou Normal UniversityXuzhouJiangsu China .
ActaMathematicaeApplicataeSinica, 2009, 25 (01) :95-104
[44]   The existence of positive solution for singular boundary value problems of first order differential equation on unbounded domains [J].
Xing-qiu Zhang ;
Jing-xian Sun .
Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 :95-104
[45]   The Existence of Positive Solution for Singular Boundary Value Problems of First Order Differential Equation on Unbounded Domains [J].
Zhang, Xing-qiu ;
Sun, Jing-xian .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (01) :95-104
[46]   Improved accuracy for the Helmholtz equation in unbounded domains [J].
Turkel, E ;
Farhat, C ;
Hetmaniuk, U .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (15) :1963-1988
[48]   Optimal boundary regularity for a singular Monge-Ampere equation [J].
Jian, Huaiyu ;
Li, You .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) :6873-6890
[49]   Dirichlet problem for anisotropic prescribed mean curvature equation on unbounded domains [J].
Ju, Hongjie ;
Liu, Yannan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) :709-724
[50]   The complex Monge-Ampere equation on weakly pseudoconvex domains [J].
Baracco, Luca ;
Tran Vu Khanh ;
Pinton, Stefano .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (04) :411-414