THE HAUSDORFF MEASURE OF SIERPINSKI CARPETS BASING ON REGULAR PENTAGON

被引:0
|
作者
Chaoyi Zeng
机构
基金
中国国家自然科学基金;
关键词
Sierpinski carpet; Hausdorff measure; upper convex density;
D O I
暂无
中图分类号
O174.12 [测度论];
学科分类号
摘要
In this paper,we address the problem of exact computation of the Hausdorff measure of a class of Sierpinski carpets E the self-similar sets generating in a unit regular pentagon on the plane.Under some conditions,we show the natural covering is the best one,and the Hausdorff measures of those sets are euqal to | E | s,where s=dim H E.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 50 条
  • [41] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [42] Bounds on the Hausdorff measure of level-N Sierpinski gaskets
    Rivera, Andrea Arauza
    Lin, Edwin
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 379 - 391
  • [43] The Hausdorff measure of the level sets of Brownian motion on the Sierpinski carpet
    Yuag, CG
    MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS, 2002, : 351 - 361
  • [44] Application of genetic algorithm to hausdorff measure estimation of sierpinski carpet
    Xiao, Qili
    Xi, Lifeng
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 182 - 188
  • [45] On the Hausdorff measure of regular ω-languages in Cantor space
    Staiger, Ludwig
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 357 - 368
  • [46] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [47] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [48] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [49] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298
  • [50] A class of Sierpinski carpets with overlaps
    Zou, Yuru
    Yao, Yuanyuan
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1422 - 1432