Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems

被引:0
作者
Xiang Zhang
机构
[1] SchoolofMathematicalSciences,KeyLaboratoryofScientificandEngineeringComputing(MinistryofEducation),ShanghaiJiaoTongUniversity
关键词
singular perturbation; homoclinic and heteroclinic orbits; limit cycle; rotating vector fields; averaging method;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them compared with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods.We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.
引用
收藏
页码:1687 / 1704
页数:18
相关论文
共 14 条
[1]  
Slow–fast n -dimensional piecewise linear differential systems[J] . R. Prohens,A.E. Teruel,C. Vich.Journal of Differential Equations . 2016 (2)
[2]  
Limit cycles bifurcating from a degenerate center[J] . Jaume Llibre,Chara Pantazi.Mathematics and Computers in Simulation . 2016
[3]  
Hopf bifurcation of a generalized Moon–Rand system[J] . Jaume Llibre,Clàudia Valls.Communications in Nonlinear Science and Numerical . 2015 (3)
[4]  
Averaging methods of arbitrary order, periodic solutions and integrability[J] . Jaume Giné,Jaume Llibre,Kesheng Wu,Xiang Zhang.Journal of Differential Equations . 2014
[5]   Higher order averaging theory for finding periodic solutions via Brouwer degree [J].
Llibre, Jaume ;
Novaes, Douglas D. ;
Teixeira, Marco A. .
NONLINEARITY, 2014, 27 (03) :563-583
[6]  
Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems[J] . Journal of Differential Equations . 2011 (6)
[7]   Periodic Orbits near Equilibria [J].
Barreira, Luis ;
Llibre, Jaume ;
Valls, Claudia .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1225-1236
[8]  
On the Hopf-zero bifurcation of the Michelson system[J] . Jaume Llibre,Xiang Zhang.Nonlinear Analysis: Real World Applications . 2010 (3)
[9]  
Averaging methods for finding periodic orbits via Brouwer degree[J] . Bulletin des sciences mathematiques . 2003 (1)
[10]   ANALYSIS OF A SINGULARLY PERTURBED TRAVELING-WAVE PROBLEM [J].
SZMOLYAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (02) :485-493