Optimal synthesis of a 3-DOF 4 limbs planar parallel mechanism with actuated redundancy is studied. The kinematics equation of the mechanism is developed and the topology of the mecha-nism is classified. The kinematics and force properties of the mechanisms according to the topologies are compared. Furthermore, a global optimizing formulation is derived from the condition number that is a local index usually used to scaling the manipulability isotropy quantitatively. The optimiza-tion is solved by genetic algorithm. The numerical results show that the topology of the mechanisms can influence the kinematics and force property considerably, and the manipulation dexterity of the mechanisms can be improved distinctly by the given formulations and the suggested optimization algorithm.