CONSTRUCTION OF HOMOGENEOUS MINIMAL 2-SPHERES IN COMPLEX GRASSMANNIANS

被引:0
作者
费杰
焦晓祥
许小卫
机构
[1] Department of Mathematics, Graduate University of Chinese Academy of Sciences
[2] Department of Mathematics, University of Science and Technology of China
基金
中央高校基本科研业务费专项资金资助;
关键词
homogeneous; 2-sphere; Gaussian curvature; Khler angle; Veronese sequence; complex Grassmann manifold;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
In this paper, we construct a class of homogeneous minimal 2-spheres in complex Grassmann manifolds by applying the irreducible unitary representations of SU (2). Furthermore, we compute induced metrics, Gaussian curvatures, Khler angles and the square lengths of the second fundamental forms of these homogeneous minimal 2-spheres in G(2, n + 1) by making use of Veronese sequence.
引用
收藏
页码:1889 / 1898
页数:10
相关论文
共 11 条
  • [1] Minimal 2-spheres with constant curvature in CP n. Bando S,,Ohnita Y. Journal of the Mathematical Society of Japan . 1987
  • [2] Differential geometry of Kaehler submanifolds. Ogiue K. Advances in Mathematics . 1974
  • [3] ON HOLOMORPHIC CURVES OF CONSTANT CURVATURE IN THE COMPLEX GRASSMANN MANIFOLD G(2,5)
    焦晓祥
    彭家贵
    [J]. ActaMathematicaScientia, 2011, 31 (01) : 237 - 248
  • [4] Harmonic maps of the two-sphere into a complex Grassmann manifold, II. Chern S S,Wolfson J G. Annals of Mathematics . 1987
  • [5] Minimal surfaces by moving frames. Chern S S,Wolfson J G. American Bee Journal . 1983
  • [6] Yang,K. Complete and Compact Minimal Surfaces . 1989
  • [7] Classical solutions in Grassmannian σ-models[J] . A. M. Din,W. J. Zakrzewski. &nbspLetters in Mathematical Physics . 1981 (6)
  • [8] The classification of homogeneous2-spheres in CPn. Li HZ,Wang CP,Wu FE. Asian Journal of Mathematics . 2001
  • [9] Classification of holomorphic spheres of constant curvature in complex Grassmann manifold G_ (2,5·). Jiao, X. X,Peng, J. G. Differ. Geom. Appl . 2004
  • [10] On conformal minimal immersions of S 2 into ? P n[J] . John Bolton,Gary R. Jensen,Marco Rigoli,Lyndon M. Woodward. &nbspMathematische Annalen . 1988 (4)