REVIEW ARTICLE FINITE ELEMENTS WITH LOCAL PROJECTION STABILIZATION FOR INCOMPRESSIBLE FLOW PROBLEMS

被引:1
作者
Malte Braack [1 ]
Gerr Lube [2 ]
机构
[1] Mathematisches Seminar,Christian-Albrechts-Universitt zu Kiel,Ludewig-Meyn-StrD- Kiel,Germany
[2] Institut für Numerische und Angewandte Mathematik,Georg-August Universitt Gttingen,Lotzestrasse - D- Gttingen,Germany
关键词
Finite element method; Stabilization; Computational fluid dynamics; Error estimates; Navier-Stokes; Stokes;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
<正> In this paper we review recent developments in the analysis of finite element methodsfor incompressible flow problems with local projection stabilization (LPS).These methodspreserve the favourable stability and approximation properties of classical residual-basedstabilization (RBS) techniques but avoid the strong coupling of velocity and pressure in thestabilization terms.LPS-methods belong to the class of symmetric stabilization techniquesand may be characterized as variational multiscale methods.In this work we summarizethe most important a priori estimates of this class of stabilization schemes developed in thepast 6 years.We consider the Stokes equations,the Oseen linearization and the Navier-Stokesequations.Furthermore,we apply it to optimal control problems with linear(ized)flow problems,since the symmetry of the stabilization leads to the nice feature that theoperations "discretize" and "optimize" commute.
引用
收藏
页码:116 / 147
页数:32
相关论文
共 9 条
[1]   Finite element error analysis of a variational multiscale method for the Navier-Stokes equations [J].
John V. ;
Kaya S. .
Advances in Computational Mathematics, 2008, 28 (1) :43-61
[2]   Optimal control of the convection-diffusion equation using stabilized finite element methods [J].
Becker, Roland ;
Vexler, Boris .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :349-367
[3]   Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method [J].
Braack, M ;
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2544-2566
[4]   The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations [J].
Abraham, F ;
Behr, M ;
Heinkenschloss, M .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 41 (03) :229-251
[5]   Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement [J].
Li, ST ;
Petzold, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) :310-325
[6]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[7]   Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form [J].
Houston, P ;
Süli, E .
COMPUTING, 2001, 66 (02) :99-119
[8]   First-order system least squares for the Stokes equations, with application to linear elasticity [J].
Cai, Z ;
Manteuffel, TA ;
McCormick, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1727-1741
[9]   STREAMLINE DIFFUSION METHODS FOR THE INCOMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS [J].
JOHNSON, C ;
SARANEN, J .
MATHEMATICS OF COMPUTATION, 1986, 47 (175) :1-18