Molecular dynamics simulation of the A-DNA to B-DNA transition in aqueous RbCl solution

被引:0
|
作者
YU YangXin [1 ]
FUJIMOTO Shintaro [1 ]
机构
[1] Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University
基金
中国国家自然科学基金;
关键词
DNA conformational transition; molecular dynamics; aqueous RbCl solution;
D O I
暂无
中图分类号
O643.1 [化学动力学];
学科分类号
070304 ; 081704 ;
摘要
Unrestrained molecular dynamics (MD) simulations have been carried out to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA conformational transitions in aqueous RbCl solutions. The PARM99 force field in the AMBER8 package was used to investigate the effect of RbCl concentration on the dynamics of the A→B conformational transition in the DNA duplex d(CGCGAATTCGCG)2 . Canonical Aand B-form DNA were assumed for the initial conformation and the final conformation had a length per complete turn that matched the canonical B-DNA. The DNA structure was monitored for 3.0 ns and the distances between the C5′ atoms were obtained from the simulations. It was found that all of the double stranded DNA strands of A-DNA converged to the structure of B-form DNA within 1.0 ns during the unrestrained MD simulations. In addition, increasing the RbCl concentration in aqueous solution hindered the A→B conformational transition and the transition in aqueous RbCl solution was faster than that in aqueous NaCl solution for the same electrolyte strength. The effects of the types and concentrations of counterions on the dynamics of the A→B conformational transition can be understood in terms of the variation in water activity and the number of accumulated counterions in the major grooves of A-DNA. The rubidium ion distributions around both fixed A-DNA and B-DNA were obtained using the restrained MD simulations to help explain the effect of RbCl concentration on the dynamics of the A→B conformational transition.
引用
收藏
页码:524 / 532
页数:9
相关论文
共 50 条
  • [31] DNA ASSOCIATIONS - PACKING CALCULATIONS IN A-DNA, B-DNA, AND Z-DNA STRUCTURES
    SRINIVASAN, AR
    OLSON, WK
    BIOPHYSICAL CHEMISTRY, 1992, 43 (03) : 279 - 310
  • [32] DNA ASSOCIATIONS - PACKING CALCULATIONS IN A-DNA, B-DNA, AND Z-DNA STRUCTURES
    SRINIVASAN, AR
    OLSON, WK
    BIOPHYSICAL JOURNAL, 1990, 57 (02) : A450 - A450
  • [33] Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT](2) in the presence of hexaamminecobalt(III)
    Cheatham, TE
    Kollman, PA
    STRUCTURE, 1997, 5 (10) : 1297 - 1311
  • [34] AN ANALYSIS OF THE SEQUENCE DEPENDENCE OF THE STRUCTURE AND ENERGY OF A-DNA AND B-DNA MODELS USING MOLECULAR MECHANICS
    TILTON, RF
    WEINER, PK
    KOLLMAN, PA
    BIOPOLYMERS, 1983, 22 (03) : 969 - 1002
  • [35] b-DNA twitching dynamics: A molecular dynamics study
    Klaren, William D.
    Bongiorno, Angelo
    Gallington, Leighanne
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [36] Thermodynamic and kinetic properties of a single base pair in A-DNA and B-DNA
    Liu, Taigang
    Yu, Ting
    Zhang, Shuhao
    Wang, Yujie
    Zhang, Wenbing
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [37] A continuous transition from A-DNA to B-DNA in the 1:1 complex between nogalamycin and the hexamer dCCCGGG
    Cruse, WBT
    Saludjian, P
    Leroux, Y
    Leger, G
    ElManouni, D
    Prange, T
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (26) : 15558 - 15567
  • [38] A molecular simulation picture of DNA hydration around A- and B-DNA
    Feig, M
    Pettitt, BM
    BIOPOLYMERS, 1998, 48 (04) : 199 - 209
  • [39] Solvent Reorganization Energies in A-DNA, B-DNA, and Rhodamine 6G-DNA Complexes from Molecular Dynamics Simulations with a Polarizable Force Field
    Vladimirov, Egor
    Ivanova, Anela
    Roesch, Notker
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (13): : 4425 - 4434
  • [40] DETERMINATION OF LOCAL RAMAN TENSORS OF B-DNA AND A-DNA BY POLARIZED RAMAN MICROSPECTROSCOPY
    BENEVIDES, JM
    OVERMAN, SA
    TSUBOI, M
    THOMAS, GJ
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A296 - A296