Molecular dynamics simulation of the A-DNA to B-DNA transition in aqueous RbCl solution

被引:0
|
作者
YU YangXin [1 ]
FUJIMOTO Shintaro [1 ]
机构
[1] Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University
基金
中国国家自然科学基金;
关键词
DNA conformational transition; molecular dynamics; aqueous RbCl solution;
D O I
暂无
中图分类号
O643.1 [化学动力学];
学科分类号
070304 ; 081704 ;
摘要
Unrestrained molecular dynamics (MD) simulations have been carried out to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA conformational transitions in aqueous RbCl solutions. The PARM99 force field in the AMBER8 package was used to investigate the effect of RbCl concentration on the dynamics of the A→B conformational transition in the DNA duplex d(CGCGAATTCGCG)2 . Canonical Aand B-form DNA were assumed for the initial conformation and the final conformation had a length per complete turn that matched the canonical B-DNA. The DNA structure was monitored for 3.0 ns and the distances between the C5′ atoms were obtained from the simulations. It was found that all of the double stranded DNA strands of A-DNA converged to the structure of B-form DNA within 1.0 ns during the unrestrained MD simulations. In addition, increasing the RbCl concentration in aqueous solution hindered the A→B conformational transition and the transition in aqueous RbCl solution was faster than that in aqueous NaCl solution for the same electrolyte strength. The effects of the types and concentrations of counterions on the dynamics of the A→B conformational transition can be understood in terms of the variation in water activity and the number of accumulated counterions in the major grooves of A-DNA. The rubidium ion distributions around both fixed A-DNA and B-DNA were obtained using the restrained MD simulations to help explain the effect of RbCl concentration on the dynamics of the A→B conformational transition.
引用
收藏
页码:524 / 532
页数:9
相关论文
共 50 条
  • [21] DIELECTRIC STUDY ON HYDRATION OF B-DNA, A-DNA, AND Z-DNA
    UMEHARA, T
    KUWABARA, S
    MASHIMO, S
    YAGIHARA, S
    BIOPOLYMERS, 1990, 30 (7-8) : 649 - 656
  • [22] Molecular dynamics of minimal B-DNA
    Mazur, AK
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2001, 22 (04) : 457 - 467
  • [23] Understanding B-DNA to A-DNA transition in the right-handed DNA helix: Perspective from a local to global transition
    Kulkarni, Mandar
    Mukherjee, Arnab
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2017, 128 : 63 - 73
  • [24] DISPLACEMENTS OF BACKBONE VIBRATIONAL-MODES OF A-DNA AND B-DNA
    LU, KC
    VANZANDT, LL
    PROHOFSKY, EW
    BIOPHYSICAL JOURNAL, 1979, 28 (01) : 27 - 32
  • [25] BASE SEQUENCE AND HELIX STRUCTURE VARIATION IN B-DNA AND A-DNA
    DICKERSON, RE
    BIOPHYSICAL JOURNAL, 1983, 41 (02) : A210 - A210
  • [26] Effect of Different Force Fields on B-DNA to A-DNA Conversion
    Zhang Hong
    Cai Wensheng
    Shag Xueguang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (06): : 1205 - 1211
  • [27] BASE SEQUENCE AND HELIX STRUCTURE VARIATION IN B-DNA AND A-DNA
    DICKERSON, RE
    JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (03) : 419 - 441
  • [28] Invariant and variable base stacking geometries in B-DNA and A-DNA
    Neugebauerová, S
    Kypr, J
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2000, 18 (01): : 73 - 81
  • [29] MD Simulation of the Transitions between B-DNA and A-DNA in the Framework of a Coarse-Grained Model
    Kovaleva, N. A.
    Zubova, E. A.
    DOKLADY PHYSICAL CHEMISTRY, 2017, 475 : 119 - 121
  • [30] MD simulation of the transitions between B-DNA and A-DNA in the framework of a coarse-grained model
    N. A. Kovaleva
    E. A. Zubova
    Doklady Physical Chemistry, 2017, 475 : 119 - 121